Java常见排序:冒泡排序、快速排序、选择排序、插入排序、归并排序

     冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

 * 冒泡法排序<br/>  

 * 比较相邻的元素。如果第一个比第二个大,就交换他们两个。  
 * 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。  
 * 针对所有的元素重复以上的步骤,除了最后一个。</li>  
 * 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。  

 *   
 * @param numbers  
 *            需要排序的整型数组  
 */  
public static void bubbleSort(int[] numbers) {   
    int temp; // 记录临时中间值   
    int size = numbers.length; // 数组大小   
    for (int i = 0; i < size - 1; i++) {   
        for (int j = i + 1; j < size; j++) {   
            if (numbers[i] < numbers[j]) { // 交换两数的位置   
                temp = numbers[i];   
                numbers[i] = numbers[j];   
                numbers[j] = temp;   
            }   
        }   
    }   
}

快速排序使用分治法策略来把一个序列分为两个子序列。

 * 快速排序  
 *   
 * 从数列中挑出一个元素,称为“基准” 
 * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,  
 * 该基准是它的最后位置。这个称为分割(partition)操作。  
 * 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。  
 *   
 *   
 * @param numbers  
 * @param start  
 * @param end  
 */  
public static void quickSort(int[] numbers, int start, int end) {   
    if (start < end) {   
        int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)   
        int temp; // 记录临时中间值   
        int i = start, j = end;   
        do {   
            while ((numbers[i] < base) && (i < end))   
                i++;   
            while ((numbers[j] > base) && (j > start))   
                j--;   
            if (i <= j) {   
                temp = numbers[i];   
                numbers[i] = numbers[j];   
                numbers[j] = temp;   
                i++;   
                j--;   
            }   
        } while (i <= j);   
        if (start < j)   
            quickSort(numbers, start, j);   
        if (end > i)   
            quickSort(numbers, i, end);   
    }   
}
选择排序是一种简单直观的排序方法,每次寻找序列中的最小值,然后放在最末尾的位置。
 * 选择排序  
 * 在未排序序列中找到最小元素,存放到排序序列的起始位置  
 * 再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。  
 * 以此类推,直到所有元素均排序完毕。  

 *   
 * @param numbers  
 */  
public static void selectSort(int[] numbers) {   
    int size = numbers.length, temp;   
    for (int i = 0; i < size; i++) {   
        int k = i;   
        for (int j = size - 1; j >i; j--)  {   
            if (numbers[j] < numbers[k])  k = j;   
        }   
        temp = numbers[i];   
        numbers[i] = numbers[k];   
        numbers[k] = temp;   
    }   
}
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
 * 插入排序<br/>  
 *   
 * 从第一个元素开始,该元素可以认为已经被排序 
 * 取出下一个元素,在已经排序的元素序列中从后向前扫描 
 * 如果该元素(已排序)大于新元素,将该元素移到下一位置 
 * 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 
 * 将新元素插入到该位置中  
 * 重复步骤2 
 *  
 *   
 * @param numbers  
 */  
public static void insertSort(int[] numbers) {   
    int size = numbers.length, temp, j;   
    for(int i=1; i<size; i++) {   
        temp = numbers[i];   
        for(j = i; j > 0 && temp < numbers[j-1]; j--)   
            numbers[j] = numbers[j-1];   
        numbers[j] = temp;   
    }   
}
归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。
 * 归并排序 
 *   
 * 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>  
 * 设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>  
 * 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>  
 * 重复步骤3直到某一指针达到序列尾</li>  
 * <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>  
 * </ul>  
 *   
 * @param numbers  
 */  
public static void mergeSort(int[] numbers, int left, int right) {   
    int t = 1;// 每组元素个数   
    int size = right - left + 1;   
    while (t < size) {   
        int s = t;// 本次循环每组元素个数   
        t = 2 * s;   
        int i = left;   
        while (i + (t - 1) < size) {   
            merge(numbers, i, i + (s - 1), i + (t - 1));   
            i += t;   
        }   
        if (i + (s - 1) < right)   
            merge(numbers, i, i + (s - 1), right);   
    }   
}   
/**  
 * 归并算法实现  
 *   
 * @param data  
 * @param p  
 * @param q  
 * @param r  
 */  
private static void merge(int[] data, int p, int q, int r) {   
    int[] B = new int[data.length];   
    int s = p;   
    int t = q + 1;   
    int k = p;   
    while (s <= q && t <= r) {   
        if (data[s] <= data[t]) {   
            B[k] = data[s];   
            s++;   
        } else {   
            B[k] = data[t];   
            t++;   
        }   
        k++;   
    }   
    if (s == q + 1)   
        B[k++] = data[t++];   
    else  
        B[k++] = data[s++];   
    for (int i = p; i <= r; i++)   
        data[i] = B[i];   
}

将之前介绍的所有排序算法整理成NumberSort类,代码

 import java.util.Random;   
//Java实现的排序类  
public class NumberSort {   
    //私有构造方法,禁止实例化  
    private NumberSort() {   
        super();   
    }    
    //冒泡法排序 
    public static void bubbleSort(int[] numbers) {   
        int temp; // 记录临时中间值   
        int size = numbers.length; // 数组大小   
        for (int i = 0; i < size - 1; i++) {   
            for (int j = i + 1; j < size; j++) {   
                if (numbers[i] < numbers[j]) { // 交换两数的位置   
                    temp = numbers[i];   
                    numbers[i] = numbers[j];   
                    numbers[j] = temp;   
                }   
            }   
        }   
    }   
    //快速排序
    public static void quickSort(int[] numbers, int start, int end) {   
        if (start < end) {   
            int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)   
            int temp; // 记录临时中间值   
            int i = start, j = end;   
            do {   
                while ((numbers[i] < base) && (i < end))   
                    i++;   
                while ((numbers[j] > base) && (j > start))   
                    j--;   
                if (i <= j) {   
                    temp = numbers[i];   
                    numbers[i] = numbers[j];   
                    numbers[j] = temp;   
                    i++;   
                    j--;   
                }   
            } while (i <= j);   
            if (start < j)   
                quickSort(numbers, start, j);   
            if (end > i)   
                quickSort(numbers, i, end);   
        }   
    }   
    //选择排序 
    public static void selectSort(int[] numbers) {   
        int size = numbers.length, temp;   
        for (int i = 0; i < size; i++) {   
            int k = i;   
            for (int j = size - 1; j > i; j--) {   
                if (numbers[j] < numbers[k])   
                    k = j;   
            }   
            temp = numbers[i];   
            numbers[i] = numbers[k];   
            numbers[k] = temp;   
        }   
    }   
    //插入排序    
    // @param numbers  
    public static void insertSort(int[] numbers) {   
        int size = numbers.length, temp, j;   
        for (int i = 1; i < size; i++) {   
            temp = numbers[i];   
            for (j = i; j > 0 && temp < numbers[j - 1]; j--)   
                numbers[j] = numbers[j - 1];   
            numbers[j] = temp;   
        }   
    }   
    //归并排序  
    public static void mergeSort(int[] numbers, int left, int right) {   
        int t = 1;// 每组元素个数   
        int size = right - left + 1;   
        while (t < size) {   
            int s = t;// 本次循环每组元素个数   
            t = 2 * s;   
            int i = left;   
            while (i + (t - 1) < size) {   
                merge(numbers, i, i + (s - 1), i + (t - 1));   
                i += t;   
            }   
            if (i + (s - 1) < right)   
                merge(numbers, i, i + (s - 1), right);   
        }   
    }    
    //归并算法实现  
    private static void merge(int[] data, int p, int q, int r) {   
        int[] B = new int[data.length];   
        int s = p;   
        int t = q + 1;   
        int k = p;   
        while (s <= q && t <= r) {   
            if (data[s] <= data[t]) {   
                B[k] = data[s];   
                s++;   
            } else {   
                B[k] = data[t];   
                t++;   
            }   
            k++;   
        }   
        if (s == q + 1)   
            B[k++] = data[t++];   
        else  
            B[k++] = data[s++];   
        for (int i = p; i <= r; i++)   
            data[i] = B[i];   
    }   
  
}







发布了127 篇原创文章 · 获赞 196 · 访问量 1185万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览