From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for......部分意译

本文探讨了如何利用生理信号如肌电图、心电图等,通过特征提取如ANOVA、SFS/SBS和PCA/Fisher投影,来识别用户的情绪变化。实验涉及不同情感音乐诱发的生理反应,并对比了KNN、LDF和MLP等分类算法在情绪识别上的表现。研究发现,高唤醒与特定生理特征关联,如低SC和快速呼吸在负面情绪中的体现。
摘要由CSDN通过智能技术生成

从生理信号到情绪:实现和比较特征提取和分类的选定方法

原文:https://ieeexplore.ieee.org/document/1521579

介绍

生理数据的一大优势是:当用户连接到生物信号传感器时,我们可以不断收集有关用户情绪变化的信息。

实验设置和数据收集

首先,让被试自己挑4首音乐歌曲,对应4种情感(欢乐、愤怒、悲伤、愉悦);
然后,当被试听音乐的时候记录肌电图(EMG),心电图(ECG),皮肤电导(SC),呼吸变化(RSP);对每种情感都收集了25天的记录;录音的长度是歌的长度。

特征提取与分类

信号处理
  • 信号修整为2min长度
  • 低通滤波平滑处理
  • 归一化,以调整随天数变化的基线水平差异
  • 去除SC信号的基线,以仅考虑相对幅度
  • 去除EMG的呼吸和心跳伪影
  • 通过RSP计算呼吸速率和幅度
  • 通过检测R波,从ECG信号中计算心跳
特征(32个)
选取特征
  • 方差分析(ANOVA):用于确定某个要素在两个或多个类别之间是否显示出显著差异
  • 顺序前向选择(SFS)
  • 顺序向后选择(SBS)
    在这里插入图片描述
生成特征?
  • 主成分分析(PCA):从原始特征中提取一组新的特征;不考虑任何类信息,可能会导致重要的区分信息丢失。
  • Fisher投影:最小化类内的散布并最大化类之间的散布
    在这里插入图片描述
分类
  • k最近邻(KNN):基于实例的方法。它会保存所有训练示例,并通过查看其最近的邻居来标记一个新实例。
  • 线性判别函数(LDF):统计方法,可为每个类别建立概率模型。对于新实例,选择其模型最适合的类。
  • 多层感知器(MLP):具有一个包含多个隐藏单元的隐藏层。它的输入层有足够的单元格来接受整个特征向量。输出层由每个类别的一个神经元组成。
实验结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

其他数据集测试

MIT Media Lab

  • 包含四个传感器的生理数据:SC,EMG,RSP和BVP(血容量脉冲)
  • 八个情绪状态
  • 在这里插入图片描述
结论
  • 快乐的特征:高SC和EMG-Ievels,深呼吸和缓慢呼吸以及心律加快
  • 愤怒的特征:平稳而快速的呼吸,SC和EMG-Ievels也很高
  • 愉悦和悲伤:低SC和EMG信号;愉悦时心律更快
  • 在我们的数据集中,积极情绪的特征在于低SC-Ievel,而MIT-Dataset显示了较高的SC
  • 高SC和EMG级别是高唤醒的良好指标
  • 负价情绪的呼吸频率更高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值