从生理信号到情绪:实现和比较特征提取和分类的选定方法
原文:https://ieeexplore.ieee.org/document/1521579
介绍
生理数据的一大优势是:当用户连接到生物信号传感器时,我们可以不断收集有关用户情绪变化的信息。
实验设置和数据收集
首先,让被试自己挑4首音乐歌曲,对应4种情感(欢乐、愤怒、悲伤、愉悦);
然后,当被试听音乐的时候记录肌电图(EMG),心电图(ECG),皮肤电导(SC),呼吸变化(RSP);对每种情感都收集了25天的记录;录音的长度是歌的长度。
特征提取与分类
信号处理
- 信号修整为2min长度
- 低通滤波平滑处理
- 归一化,以调整随天数变化的基线水平差异
- 去除SC信号的基线,以仅考虑相对幅度
- 去除EMG的呼吸和心跳伪影
- 通过RSP计算呼吸速率和幅度
- 通过检测R波,从ECG信号中计算心跳
特征(32个)
选取特征
- 方差分析(ANOVA):用于确定某个要素在两个或多个类别之间是否显示出显著差异
- 顺序前向选择(SFS)
- 顺序向后选择(SBS)
生成特征?
- 主成分分析(PCA):从原始特征中提取一组新的特征;不考虑任何类信息,可能会导致重要的区分信息丢失。
- Fisher投影:最小化类内的散布并最大化类之间的散布
分类
- k最近邻(KNN):基于实例的方法。它会保存所有训练示例,并通过查看其最近的邻居来标记一个新实例。
- 线性判别函数(LDF):统计方法,可为每个类别建立概率模型。对于新实例,选择其模型最适合的类。
- 多层感知器(MLP):具有一个包含多个隐藏单元的隐藏层。它的输入层有足够的单元格来接受整个特征向量。输出层由每个类别的一个神经元组成。
实验结果
其他数据集测试
MIT Media Lab
- 包含四个传感器的生理数据:SC,EMG,RSP和BVP(血容量脉冲)
- 八个情绪状态
结论
- 快乐的特征:高SC和EMG-Ievels,深呼吸和缓慢呼吸以及心律加快
- 愤怒的特征:平稳而快速的呼吸,SC和EMG-Ievels也很高
- 愉悦和悲伤:低SC和EMG信号;愉悦时心律更快
- 在我们的数据集中,积极情绪的特征在于低SC-Ievel,而MIT-Dataset显示了较高的SC
- 高SC和EMG级别是高唤醒的良好指标
- 负价情绪的呼吸频率更高