数字三角形

上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。
路径上的每一步只能从一个数走到下一层和它最近的左边的那个数或者右 边的那个数。此外,向左下走的次数与向右下走的次数相差不能超过 1。
输入描述
输入的第一行包含一个整数 N(1≤N≤100),表示三角形的行数。
下面的 NN 行给出数字三角形。数字三角形上的数都是 0 至 100 之间的整数。
输出描述
输出一个整数,表示答案。
输入输出样例
示例
输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出
27
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
如果一开始没提醒我们使用动态规划来做我们又会怎么做,首先我们用二维数组来存储一下我们的数字三角形是绝对都能想到的,为了更清晰,我就把他画的比较直观一点(用树来表示了)

思路
根据题意,我们是要从上面下来算出最大的值的,一开始我是想用辅助数组来存储各个值相加看出来那个最大的,但是那样就太麻烦了,我们可以直接修改我们的数字三角形来获得我们的路径值
问题来了,分支算法能用么?我们发现我们走的每一步都不一定是相同的,也就是说我们走的每一步都是独立的,谁知道你走的这一步是不是最大的值呢?
也就是说我们得考虑动态规划的方式,我们下一步的走法跟上一步的结果是有关系的,是建立在上一步的基础上的,挺符合我们的动态规划的
只能走下一行相邻的数字路径,每一步都这样,这是相同点,下一步的结果是在上一步结果基础上建立的。都符合动态规划所以使用动态规划
代码
public class 数字三角形 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
//在此输入您的代码...
//1.二维数组来存储我们的三角形
//1.1我们的行数
int N = scan.nextInt();
int[][] arr = new int[N+1][N+1];
//1.2生成数字三角形
for (int i

本文介绍了如何解决蓝桥杯比赛中的一道动态规划题目——寻找数字三角形中最大的路径和。通过分析题目,确定使用动态规划的方法,遵循每一步路径与上一步结果有关的原则,逐步求解。在实现过程中,注意向左下和向右下走的次数差不超过1的限制,最终找到符合条件的最大路径和为27。
最低0.47元/天 解锁文章
1416

被折叠的 条评论
为什么被折叠?



