Hive map和reduce个数的设置

本文介绍了如何优化Hive作业,通过设置mapred.max.split.size、mapred.min.split.size.per.node等参数减少过多的小文件导致的map任务数量。同时,针对文件大小和记录数,调整mapreduce.input.fileinputformat.split.maxsize以增加map任务。在reduce方面,通过设置hive.exec.reducers.bytes.per.reducer控制每个reduce处理的数据量,并可以直接设定mapred.reduce.tasks来指定reduce任务的数量。在特定情况下,如无group by、order by或存在笛卡尔积,可能只需要一个reduce任务。
摘要由CSDN通过智能技术生成


hive优化的几种情况

目标就是每个map,reduce数据处理量要适当
1.hive小文件很多,造成map个数很多,需要减少map个数
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,
按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)

2.文件小于128M,但是记录多,默认用一个map去算,增加map个数

块大小的计算方式
根据computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M公式,
调整maxSize最大值。让ma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wending-Y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值