理解Hinge Loss (折页损失函数、铰链损失函数)
Hinge Loss 是机器学习领域中的一种损失函数,可用于“最大间隔(max-margin)”分类,其最著名的应用是作为SVM的目标函数。
在二分类情况下,公式如下:
L
(
y
)
=
m
a
x
(
0
,
1
–
t
⋅
y
)
L(y) = max(0 , 1 – t⋅y)
L(y)=max(0,1–t⋅y)
其中,y是预测值(-1到1之间),t为目标值(1或 -1)。其含义为,y的值在 -1到1之间即可,并不鼓励|y|>1,即让某个样本能够正确分类就可以了,不鼓励分类器过度自信,当样本与分割线的距离超过1时并不会有任何奖励。目的在于使分类器更专注于整体的分类误差。
变种
在实际应用中,一方面,预测值y并不总是属于[-1,1],也可能属于其他的取值范围;另一方面,很多时候我们希望训练的是两个元素之间的相似关系,而非样本的类别得分。所以下面的公式可能会更加常用:
L
(
y
,
y
′
)
=
m
a
x
(
0
,
m
a
r
g
i
n
–
(
y
–
y
′
)
)
=
m
a
x
(
0
,
m
a
r
g
i
n
+
(
y
′
–
y
)
)
=
m
a
x
(
0
,
m
a
r
g
i
n
+
y
′
–
y
)
L_( y, y′) = max( 0, margin – (y–y′) )\\ = max( 0, margin + (y′–y) )\\ = max( 0, margin + y′ – y)
L(y,y′)=max(0,margin–(y–y′))=max(0,margin+(y′–y))=max(0,margin+y′–y)
其中,y是正确预测的得分,y′是错误预测的得分,两者的差值可用来表示两种预测结果的相似关系,margin是一个由自己指定的安全系数。我们希望正确预测的得分高于错误预测的得分,且高出一个边界值margin,换句话说,y越高越好,y′
越低越好,(y–y′)越大越好,(y′–y)越小越好,但二者得分之差最多为margin就足够了,差距更大并不会有任何奖励。这样设计的目的在于,对单个样本正确分类只要有margin的把握就足够了,更大的把握则不必要,过分注重单个样本的分类效果反而有可能使整体的分类效果变坏。分类器应该更加专注于整体的分类误差。
举个栗子,假设有3个类cat、car、frog :

第一列表示样本真实类别为cat,分类器判断样本为cat的分数为3.2,判断为car的分数为5.1,判断为frog的分数为 -1.7。那这里的 hinge
loss 怎么计算呢?

这里是让其他两类的分数去减去真实类别的分数,这相当于计算其他类与真实类之间的误差。因为我们希望错误类别的评分低于正确类别的评分,所以这个误差值越小越好。另外,还使用了一个边界值margin,取值为1,为了使训练出的分类器有更大的把握进行正确分类。
优化
hinge loss 函数是凸函数,因此机器学习中很多的凸优化方法同样适用于 hinge loss。
然而,因为 hinge loss 在t⋅y=1的时候导数是不确定的,所以一个平滑版的 hinge loss 函数会更加有助于优化,它由Rennie and
Srebro提出 :
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0k4b9Y4M-1590198157015)(./1_files/20180417015257378)]](https://i-blog.csdnimg.cn/blog_migrate/26bf779a44ee369aca118db60859d192.png)
除此之外,还有二次方平滑 :


上图为 hinge loss 函数关于z=t⋅y的三种版本,蓝色的线是原始版,绿色线为二次方平滑,红色的线为分段平滑,也就是Rennie and
Srebro提出的那一版。
参考资料:
https://blog.csdn.net/luo123n/article/details/48878759###
https://blog.csdn.net/sxf1061926959/article/details/60470415


1095

被折叠的 条评论
为什么被折叠?



