PaperReading-KG2E 《Learning to Represent Knowledge Graphs with Gaussian Embedding》

本文详细解读了KG2E(Learning to represent knowledge graphs with gaussian embedding)论文,指出其在高斯空间中对实体和关系进行表征,以解决准确性问题。通过协方差矩阵表示实体和关系的准确性,采用非对称和对称的势能差损失函数,并提供了算法伪代码。作者鼓励对此有兴趣的研究者交流。
摘要由CSDN通过智能技术生成

本文时 KG2E,《Learning to represent knowledge graphs with gaussian embedding》的论文阅读笔记,如果有做相关工作的同学可以与我联系 zhaoliang19960421@outlook.com

背景

之前的TransX系列的论文都是在欧式空间中对实体和关系进行表征,然后利用基于空间中点相似度的计算方法来计算势能(通过关系翻译的头实体和真实尾实体之间的差距)

在论文中提出了之前的Trans系列论文没有关注到的点,在本文中称之为实体/关系的准确性(按照论文中的说法,实际上和TranSparse 提出了异构性、平衡性是一个意思,KG2E发表在CKIM2015,TranSparse发表在AAAI2016)

1
论文中有关于影响到准确性的点和TranSparse中的异构性和平衡性的定义是一样的。

对于实体的准确性高低的影响定义成了,一个实体/关系的准确性会影响到在三元组中确定性的置信度,论文中的举例就是在三元组 希拉里-配偶-克林顿,希拉里-国家是-美国,这两个三元组里,配偶这个关系在确定这个三元组中的置信度更好,因为通过配偶可以直接从克林顿到希拉里,但是通过国家是不能直接从美国到希拉里。这么说在这个三元组中配偶关系的确定性更高。

1

所以KG2E将这个问题考虑了进来,在高斯空间中对实体和关系进行表征,高斯空间里面的均值(也就是高斯空间中的概率最高点的位置)作为表征的结果。

用这个高斯空间的协方差矩阵(在实际计算中使用的协方差矩阵的对角向量)来表示准确性,使用协方差矩阵的意义在于通过计算不同特征之间的协方差来表示特征之间的关系,协方差矩阵(对角向量)之间相似度越大,那么在三元组中的相关性也就越大,置信度也就越高,准确度也就越高。

这个是我的个人理解,没有在论文上找到关于协方差和准确度的证明
如果您知道更好更准确的解释,麻烦您通过邮件和我沟通联系 
zhaoliang19960421@outlook.com

思路

基于以上的背景知识,KG2E没有在欧式空间中而是在高纬高斯空间中进行了计算,高纬高斯的均值作为position(也就是最终的结果)

和之前的Trans系列鲁文一样,也是计算的势能差值,最小化了全局的合叶损失函数。因为实体/关系是在高纬空间中进行表征的,无法利用欧式空间中的点之间的计算方法,所以在本文中计算从头实体通

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>