机器学习—python+sklearn实现KNN&KD树算法

本文详细介绍了如何使用Python的sklearn库实现KNN(K近邻)和KD树算法,包括步骤和关键代码,是机器学习初学者的实用教程。
摘要由CSDN通过智能技术生成

python+sklearn实现KNN及KD树算法

from sklearn import datasets# 导入内置数据集模块
from sklearn.neighbors import KNeighborsClassifier# 导入sklearn.neighbors模块中KNN类
import numpy as np
from sklearn.neighbors import KDTree#导入KD树类

np.random.seed(0)# 设置随机种子,不设置的话默认是按系统时间作为参数,因此每次调用随机模块时产生的随机数都不一样设置后每次产生的一样
iris = datasets.load_iris()# 导入鸢尾花的数据集,iris是一个类似于结构体的东西,内部有样本数据,如果是监督学习还有标签数据
iris_x = iris.data# 样本数据150*4二维数据,代表150个样本,每个样本4个属性分别为花瓣和花萼的长、宽
iris_y = iris.target# 长150的以为数组,样本数据的标签
indices = np.random.permutation(len(iris_x)) # permutation接收一个数作为参数(150),产生一个0-149一维数组,只不过是随机打乱的,当然她也可以接收一个一维数组作为参数,结果是直接对这个数组打乱
iris_x_train = iris_x[indices[:-10]]# 随机选取140个样本作为训练数据集
iris_y_train = iris_y[indices[:-10]]# 并且选取这140个样本的标签作为训练数据集的标签
iris_x_test = iris_x[indices[-10:]]# 剩下的10个样本作为测试数据集
iris_y_test = iris_y[indices[-10:]]# 并且把剩下10个样本对应标签作为测试数据及的标签

knn 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>