大语言模型通过推断客户偏好来改进商品推荐系统-Multimodal Preference Discerner
大语言模型能够通过推断客户偏好,为改进商品推荐系统带来新的契机,助力电商等行业更精准地把握客户需求,提升推荐效果与用户体验。
近期,林茨约翰内斯·开普勒大学、威斯康星大学以及Meta的法比安·派舍尔(Fabian Paischer)及其同事,推出了一款名为多模态偏好识别器(Multimodal Preference Discerner,简称Mender)的创新推荐系统,它将大语言模型(LLM)巧妙集成,开启了精准推荐的新路径。
在客户与商品交互产生的海量文本信息里,隐藏着宝贵的偏好线索。像产品描述,其用生动的语言描绘商品特性,吸引客户的点往往反映了客户潜在偏好;客户撰写的产品评论,更是直接表达了对商品的感受与看法。然而,这些文本是复杂的混合体,既包含能体现客户偏好的关键内容,比如对特定手工项目所需工具的偏好描述,也充斥着干扰推荐系统的无关信息,诸如对商品交付延迟的抱怨等。在过去,传统推荐系统面对这类复杂文本常常力不从心,难以精准提取真正有用的偏好信息,导致推荐偏离客户实际需求。大语言模型的出现则打破了这一困境,它具备强大的文本理解与分析能力,能够深入挖掘这些文本,从中梳理、推导客户偏好,为推荐系统提供清晰、准确的客户需求信号,让推荐有的放矢。
Mender系统的构成精妙且协同性强,由功能各异的组件共同搭建起智能推荐的桥梁。其中,Llama 3 70B-Instruct大语言模型作为核心“智囊”,负责对各类文本信息进行深度剖析,推断客户偏好;Flan-T5编码器在各种文本上预先训练且后续保持冻结状态,它如同严谨的信息整理员,将客户数据进行嵌入处理,为后续分析做准备;从零开始训练的Transformer解码器则扮演预测专家的角色,依据前面组件处理后的信息,预测客户下一次购买的商品。
在实际运行时,Mender系统有着一套有序且高效的流程。首先,研究团队以客户已购买和评论过的产品列表作为起点。大语言模型依据商品描述以及截至当时客户留下的所有评论,施展其强大的文本分析能力,以指令形式推断出客户的偏好,比如“青睐色彩鲜艳、风格大胆的产品”。接着,为构建一个精准有效的数据集,团队将每个客户购买的商品序列,与通过特定方式匹配的推断偏好关联起来。具体操作上,他们借助预训练的Sentence-T5嵌入模型,分别对所有先前的偏好和商品描述进行嵌入处理,从中筛选出与下一次购买嵌入最为相似的偏好,以此确保数据集中的偏好与购买行为紧密相关。最后,编码器将购买列表和选定的偏好进行嵌入,解码器依据这些嵌入信息,通过不断学习来精准预测客户下一次的购买行为。
为了验证Mender系统的性能,研究人员将其与另一个在业界有一定影响力的推荐系统TIGER(TIGER同样会参考购买历史来预测下一次购买),放在Steam和亚马逊数据集上展开全面对比,选用召回率@5作为评估指标。召回率@5聚焦于正确商品出现在模型最有可能预测的前五个商品中的频率,能直观反映推荐系统的精准度。
在Steam数据集上,Mender表现卓越,召回率@5达到16.8%,TIGER也较为接近,为16.3%;而在亚马逊的玩具和游戏数据集上,Mender的优势更加凸显,召回率@5达到5.3%,TIGER仅为3.75%。综合来看,在所有参与测试的数据集上,Mender都给出了最佳推荐结果,充分证明了其在推荐精准度上的领先地位。
Mender系统带来的变革意义深远。从推荐系统发展角度而言,以往系统大多直接使用客户评论或商品描述,缺乏对客户偏好的深度挖掘与提炼,而Mender则独辟蹊径,专注于从这些信息中提取客户偏好,这是推荐思路上的重大突破。从商业应用层面出发,对于电商平台等企业来说,精准的商品推荐意味着更高的用户满意度和购买转化率。当客户在平台上频繁看到符合自己心意的商品推荐,会极大提升购物体验,进而增加对平台的信任与依赖,更愿意在平台上消费,最终推动企业业绩增长。