数据仓库数据模型设计是构建数据仓库的核心过程之一。其目的是将多个数据源中的数据整合到一个统一的数据模型中,以支持业务分析和决策。然而,在数仓建设的过程中,由于未能完全按照规范操作, 从而导致数据仓库建设比较混乱,常见以下问题:
- 数仓分层不清晰:数仓的分层没有明确的逻辑,导致数据难以管理和维护。
- 数据域划分不明确:没有明确的数据域划分,导致数据冗余和不一致。
- 模型设计不合理:模型设计没有考虑到业务的实际需求,导致数据质量低下。
- 代码不规范:代码不符合规范,导致维护困难。
- 命名不统一:命名不统一,导致数据难以理解和使用。
- 主题域划分不完整:主题域划分没有涵盖所有业务需求,导致数据缺失。
一、面临的挑战
数据中台,目的总结下来一句话:通过服务化的方式增强数据的共享能力以实现数据的复用,解决数据研发、数据分析、数据运营时碰到的痛点问题:
- 指标口径定义不一致
- 数据研发效率低问题
- 数据质量问题频发
- 大数据建设成本越来越高
- 数据发现的能力低下导致数据好不好用的问题
-
烟囱式开