classification_report指标详解

本文详细解析了sklearn库中的classification_report函数,包括precision、recall、f1-score及其平均计算方式。对于单分类问题,accuracy表示正确率,macroavg是各指标直接平均,weightedavg按类别频率加权平均。在多分类场景下,新增了microavg和samplesavg,前者考虑所有样本,后者针对每个样本计算。示例展示了不同平均方式的计算过程。

sklearn的classification_report详解
precision、recall 、f1-score这三个基本就不介绍了,主要介绍平均的一些指标micro avg、macro avg、weighted avg、samples avg、accuracy

单分类

accuracy:正确率,分类正确样本数/总样本数
macro avg:用每一个类别对应的precision、recall、f1-score直接平均
weighted avg:用每一类别个数的权重乘对应类别指标

例子

from sklearn.metrics import classification_report
print(classification_report([3,3,3,1], [1,3,1,2], target_names=['a', 'b', 'c']))
              precision    recall  f1-score   support

           a       0.00      0.00      0.00         1
           b       0.00      0.00      0.00         0
           c       1.00      0.33      0.50         3

    accuracy                           0.25         4
   macro avg       0.33      0.11      0.17         4
weighted avg       0.75      0.25      0.38         4

多分类

多分类中增加了两个指标micro avg、samples avg是针对样本计算的,其他指标是针对标签计算的

micro avg:针对样本,对每一个样本所有类别的TP加起来除以所有类别(TP+FP)
macro avg: 用每一个类别对应的precision、recall、f1-score直接平均
weighted avg:用每一类别个数的权重乘对应类别指标
samples avg:针对样本,首先对每一个样本计算precision、recall指标然后对样本进行平均

例子

from sklearn.metrics import classification_report
y_true = np.array([[1, 0, 1, 0, 0],
                   [0, 1, 0, 1, 1],
                   [1, 1, 1, 0, 1]])
y_pred = np.array([[1, 0, 0, 0, 1],
                   [0, 1, 1, 1, 0],
                   [1, 1, 1, 0, 0]])
print(classification_report(y_true, y_pred))
              precision    recall  f1-score   support  precision计算方式(自加)

           0       1.00      1.00      1.00         2    2/2
           1       1.00      1.00      1.00         2    2/2
           2       0.50      0.50      0.50         2    1/2
           3       1.00      1.00      1.00         1    1/1
           4       0.00      0.00      0.00         2    0/1

   micro avg       0.75      0.67      0.71         9    (1+2+3)/(2+3+3)=0.75
   macro avg       0.70      0.70      0.70         9  (1+1+0.5+1+0)/5=0.7
weighted avg       0.67      0.67      0.67         9  (2/9)*1+(2/9)*1+(2/9)*0.5+(1/9)*1+(2/9)*0=0.67
 samples avg       0.72      0.64      0.67         9  (1/2+2/3+3/3)/3=0.72
表头precisionrecallf1-scoresupportprecision计算方式(自加)
01.0001.0001.00022/2
11.0001.0001.00022/2
20.5000.5000.50021/2
31.0001.0001.00011/1
40.0000.0000.00020/1
micro avg0.750.670.719(1+2+3)/(2+3+3)
macro avg0.700.700.709(1+1+0.5+1+0)/5
weighted avg0.670.670.679(2/9)*1+(2/9)*1+(2/9)*0.5+(1/9)*1+(2/9)*0
samples avg0.720.640.679(1/2+2/3+3/3)/3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值