A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than or equal to the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−1000,1000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
知识点

AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1010;
int n;
int idx;
int l[maxn],r[maxn],v[maxn];
int max_depth,cnt[maxn];
void insert(int &pos,int u){
// cout<<"pos=="<<pos<<"u=="<<u<<endl;
if(pos==0){
pos=++idx;
v[pos]=u;
}else if(u<=v[pos]){
insert(l[pos],u);
}else
insert(r[pos],u);
}
void dfs(int u,int depth){
// cout<<"u=="<<u<<"depth=="<<depth<<endl;
max_depth=max(max_depth,depth);
cnt[depth]++;
if(l[u]) dfs(l[u],depth+1);
if(r[u]) dfs(r[u],depth+1);
}
int main(){
cin>>n;
int pos=0;
for(int i=1;i<=n;i++){
int u;
cin>>u;
insert(pos,u);
}
dfs(1,1);
int n1=cnt[max_depth],n2=cnt[max_depth-1];
cout<<n1<<" + "<<n2<<" = "<<n1+n2;
return 0;
}
5277

被折叠的 条评论
为什么被折叠?



