一、学习知识点概括
模型融合可以集合各种模型,从而提高模型的准确率
二、学习内容
1.投票融合:
Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。
hard_vote = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])
2.简单加权融合:
w=[1/3,1/3,1/3]
pre = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
3.stacking/blending融合:
step1:先用若干基分类器对训练集进行预测(最好交叉验证),得到train_pre = [pre1,pre2,…],对测试集训练得到test_pre = [pre1,pre2,…]
step2:用线性的分类器如lr,model = lr.fit(train_pre,ytrain),利用model预测test_pre,model.predict(test_pre)
三、学习问题与解答
模型融合的stacking方法要善于使用。
四、学习思考与总结
模型融合有时可以有效的提升模型能力。

381

被折叠的 条评论
为什么被折叠?



