数据挖掘5(模型融合)

一、学习知识点概括

模型融合可以集合各种模型,从而提高模型的准确率

二、学习内容

1.投票融合:

Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

hard_vote = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])

2.简单加权融合:

w=[1/3,1/3,1/3]
pre = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)

3.stacking/blending融合:

step1:先用若干基分类器对训练集进行预测(最好交叉验证),得到train_pre = [pre1,pre2,…],对测试集训练得到test_pre = [pre1,pre2,…]
step2:用线性的分类器如lr,model = lr.fit(train_pre,ytrain),利用model预测test_pre,model.predict(test_pre)

三、学习问题与解答

模型融合的stacking方法要善于使用。

四、学习思考与总结

模型融合有时可以有效的提升模型能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值