mysql8.0之后修改密码 // 先进入mysqlALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY '密码';
axios和vue的导入 <script src="https://unpkg.com/axios/dist/axios.min.js"></script><script src="https://cdn.jsdelivr.net/npm/vue@2/dist/vue.js"></script>这两个比较稳定
前端css 块级元素(block)特性:总是独占一行,表现为另起一行开始,而且其后的元素也必须另起一行显示;宽度(width)、高度(height)、内边距(padding)和外边距(margin)都可控制;内联元素(inline)特性:和相邻的内联元素在同一行;宽度(width)、高度(height)、内边距的top/bottom(padding-top/padding-bottom)和外边距的top/bottom(margin-top/margin-bottom)都不可改变,就是里面文字或图片的大小;块
google colab的数据加载和存储 1.启动云盘,即可看到如下from google.colab import drivedrive.mount('/content/drive')调整到当前目录 %cd /content/drive/My Drive!ls可以指从本地上传和下载,也可从网上直接下载!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip!unzip ngrok-stable-linux-amd64.zip
tqdm的简单用法 from tqdm import tqdmfrom random import random,randintimport time#设置进度条左边显示的信息pbar = tqdm(total = 100,desc='train',ncols=0,unit='step')for i in range(100): pbar.update() #设置进度条右边显示的信息 pbar.set_postfix(loss=random(),gen=randint(1,999),acc
model参数的存储和调用 # 模型的存储torch.save(xxx_model.state_dict(),'./model_param.pth')model = Net().to(device)model.load_state_dict(torch.load('./model_param.pth'))
resnet18的模型使用 输入图片格式为:(b,c,224,224)修改输出层的输出维度:import torchvisionresnet_model = torchvision.models.resnet18(pretrained=True)for param in resnet_model.parameters(): param.requires_grad = Falseresnet_model.fcclass Net(nn.Module): def __init__(self, mo
图片数据的读取 #训练数据增强,测试和验证数据只需转化为tensortrain_transform = transforms.Compose([transforms.Resize((224,224)), transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, -.406],[0.229, 0.224, 0.225
数据挖掘5(模型融合) 一、学习知识点概括模型融合可以集合各种模型,从而提高模型的准确率二、学习内容1.投票融合:Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。hard_vote = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), (
决策边界的绘制 clf.fit(xtrain,ytrain)from mlxtend.plotting import plot_decision_regionsplt.figure()fig = plot_decision_regions(X = xtrain,y = ytrain,clf = clf)plt.show()
归并排序+统计数组中的逆序对 class Solution: def InversePairs(self, data): self.cnt = 0 def merge(left,right): l1 = len(left) l2 = len(right) lis = [] i,j = 0,0 while i < 11 and j < l2: if left[i] < right[j]: lis.append(left[i]) i
数据挖掘4(建模调参) 一、学习知识点概括特征工程是建模之前最重要的步骤,主要包括:异常值处理,缺失值处理,特征归一化/标准化,特征构造,特征筛选,降维二、学习内容1.内存优化:通过调整每列的数据类型较少内存占用if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8)2.长尾处理:通过线性回归得到model,利用mode
求二叉树的深度 def depth(self,root): if not root:return 0 return 1 + max(self.depth(root.left),self.depth(root.right))
数据挖掘笔记3(特征工程) 一、学习知识点概括特征工程是建模之前最重要的步骤,主要包括:异常值处理,缺失值处理,特征归一化/标准化,特征构造,特征筛选,降维二、学习内容1.异常值处理:箱线图,3-sigma,box-cox处理有偏分布,长尾截断2.缺失值处理:不处理(针对树模型),删除(缺失太多),填充法,分箱法3.数据分桶,独热编码:针对数值型数据分桶,针对无大小关系的类别型数据进行独热编码4.特征构造:时间特征,地理特征(分箱),各种特征组合等等5.特征筛选过滤法:分类问题通常用卡方检验,回归问题用相关性分
反转链表的方法 #反转链表:迭代法pre = Nonecur = slowwhile cur:nex = cur.nextcur.next= prepre = curcur = nexreturn pre
数据挖掘笔记2(EDA) 一、学习知识点概括EDA探索数据的过程是建模之前必不可少的,通过eda更好的了解数据的分布,数据的关系等等。二、学习内容1.数据总览:head(),info()查看类型和缺失信息,describe()查看统计信息2.了解数据缺失情况,异常值检测3.总体分布情况(无界约翰逊分布),查看skewness and kurtosis,查看预测值的具体频数4.特征分为数据特征和类别特征:数字特征:相关性分析查看几个特征得 偏度和峰值每个数字特征得分布可视化数字特征相互之间的关系可视化多变量互相
数据挖掘笔记1 一、学习知识点概括数据挖掘之前需要充分理解需求和实际情况,对于题目要有深刻的理解,以便于开展接下来的挖掘工作。二、学习内容对于赛题的理解,评价指标的认识,数据的特征的分析,以及列举挖掘过程的大纲。三、学习问题与解答对于数据的特征理解相对比较繁琐与困难,不同领域的数据需要有相应的背景知识才有利于充分理解数据,以便于后续的特征工程。但是这一过程往往较耗时,需要仔细反复的推敲。四、学习思考与总结拿到数据或者题目后第一时间要做的不是急于建模,而是要理解数据,增强对数据的认识。...
pyecharts 问题:importError: cannot import name ‘xxx’ from ‘pyecharts’ (/Users/xx/anaconda3/lib/python3.7/site-packages/pyecharts/init.py)解决:from pyecharts.charts import Bar#直接from pyecharts import Bar会报错