RxJava2.0教程(三)

RxJava2.0教程(三)

大家喜闻乐见的Backpressure来啦.

这一节中我们将来学习Backpressure. 我看好多吃瓜群众早已坐不住了, 别急, 我们先来回顾一下上一节讲的Zip.

正题

上一节中我们说到Zip可以将多个上游发送的事件组合起来发送给下游, 那大家有没有想过一个问题, 如果其中一个水管A发送事件特别快, 而另一个水管B 发送事件特别慢, 那就可能出现这种情况, 发得快的水管A 已经发送了1000个事件了, 而发的慢的水管B 才发一个出来, 组合了一个之后水管A 还剩999个事件, 这些事件需要继续等待水管B 发送事件出来组合, 那么这么多的事件是放在哪里的呢? 总有一个地方保存吧? 没错, Zip给我们的每一根水管都弄了一个水缸 , 用来保存这些事件, 用通俗易懂的图片来表示就是:

zip2.png

如图中所示, 其中蓝色的框框就是zip给我们的水缸! 它将每根水管发出的事件保存起来, 等两个水缸都有事件了之后就分别从水缸中取出一个事件来组合, 当其中一个水缸是空的时候就处于等待的状态.

题外话: 大家来分析一下这个水缸有什么特点呢? 它是按顺序保存的, 先进来的事件先取出来, 这个特点是不是很熟悉呀? 没错, 这就是我们熟知的队列, 这个水缸在Zip内部的实现就是用的队列, 感兴趣的可以翻看源码查看.

好了回到正题上来, 这个水缸有大小限制吗? 要是一直往里存会怎样? 我们来看个例子:

Observable<Integer> observable1 = Observable.create(new ObservableOnSubscribe<Integer>() {    
    @Override                                                                          
    public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {       
        for (int i = 0; ; i++) {   //无限循环发事件                                                    
            emitter.onNext(i);                                                         
        }                                                                              
    }                                                                                  
}).subscribeOn(Schedulers.io());    
                                                                                
Observable<String> observable2 = Observable.create(new ObservableOnSubscribe<String>() {      
    @Override                                                                          
    public void subscribe(ObservableEmitter<String> emitter) throws Exception {        
        emitter.onNext("A");                                                           
    }                                                                                  
}).subscribeOn(Schedulers.io());    
                                                               
Observable.zip(observable1, observable2, new BiFunction<Integer, String, String>() {                 
    @Override                                                                          
    public String apply(Integer integer, String s) throws Exception {                  
        return integer + s;                                                            
    }                                                                                  
}).observeOn(AndroidSchedulers.mainThread()).subscribe(new Consumer<String>() {                               
    @Override                                                                          
    public void accept(String s) throws Exception {                                    
        Log.d(TAG, s);                                                                 
    }                                                                                  
}, new Consumer<Throwable>() {                                                         
    @Override                                                                          
    public void accept(Throwable throwable) throws Exception {                         
        Log.w(TAG, throwable);                                                         
    }                                                                                  
});                                                                                    

在这个例子中, 我们分别创建了两根水管, 第一根水管用机器指令的执行速度来无限循环发送事件, 第二根水管随便发送点什么, 由于我们没有发送Complete事件, 因此第一根水管会一直发事件到它对应的水缸里去, 我们来看看运行结果是什么样.

运行结果GIF图:

zip2.gif

我勒个草, 内存占用以斜率为1的直线迅速上涨, 几秒钟就300多M , 最终报出了OOM:

zlc.season.rxjava2demo W/art: Throwing OutOfMemoryError "Failed to allocate a 28 byte allocation with
4194304 free bytes and 8MB until OOM; 
zlc.season.rxjava2demo W/art: "main" prio=5 tid=1 Runnable      
zlc.season.rxjava2demo W/art:   | group="main" sCount=0 dsCount=0 obj=0x75188710 self=0x7fc0efe7ba00   
zlc.season.rxjava2demo W/art:   | sysTid=32686 nice=0 cgrp=default sched=0/0 handle=0x7fc0f37dc200    
zlc.season.rxjava2demo W/art:   | state=R schedstat=( 0 0 0 ) utm=948 stm=120 core=1 HZ=100         
zlc.season.rxjava2demo W/art:   | stack=0x7fff971e8000-0x7fff971ea000 stackSize=8MB         
zlc.season.rxjava2demo W/art:   | held mutexes= "mutator lock"(shared held)    
zlc.season.rxjava2demo W/art:     at java.lang.Integer.valueOf(Integer.java:742)                                                            

出现这种情况肯定是我们不想看见的, 这里就可以引出我们的Backpressure了, 所谓的Backpressure其实就是为了控制流量, 水缸存储的能力毕竟有限, 因此我们还得从源头去解决问题, 既然你发那么快, 数据量那么大, 那我就想办法不让你发那么快呗.

那么这个源头到底在哪里, 究竟什么时候会出现这种情况, 这里只是说的Zip这一个例子, 其他的地方会出现吗? 带着这个问题我们来探究一下.

我们让事情变得简单一点, 从一个单一的Observable说起.

来看段代码:

Observable.create(new ObservableOnSubscribe<Integer>() {                         
    @Override                                                                    
    public void subscribe(ObservableEmitter<Integer> emitter) throws Exception { 
        for (int i = 0; ; i++) {   //无限循环发事件                                              
            emitter.onNext(i);                                                   
        }                                                                        
    }                                                                            
}).subscribe(new Consumer<Integer>() {                                           
    @Override                                                                    
    public void accept(Integer integer) throws Exception {                       
        Thread.sleep(2000);                                                      
        Log.d(TAG, "" + integer);                                                
    }                                                                            
});                                                                              

这段代码很简单, 上游同样无限循环的发送事件, 在下游每次接收事件前延时2秒. 上下游工作在同一个线程里, 来看下运行结果:

peace.gif

哎卧槽, 怎么如此平静, 感觉像是走错了片场.

为什么呢, 因为上下游工作在同一个线程呀骚年们! 这个时候上游每次调用emitter.onNext(i)其实就相当于直接调用了Consumer中的:

   public void accept(Integer integer) throws Exception {                       
        Thread.sleep(2000);                                                      
        Log.d(TAG, "" + integer);                                                
   }     

所以这个时候其实就是上游每延时2秒发送一次. 最终的结果也说明了这一切.

那我们加个线程呢, 改成这样:

Observable.create(new ObservableOnSubscribe<Integer>() {                            
    @Override                                                                       
    public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {    
        for (int i = 0; ; i++) {    //无限循环发事件                                                     
            emitter.onNext(i);                                                      
        }                                                                           
    }                                                                               
}).subscribeOn(Schedulers.io())                                                    
        .observeOn(AndroidSchedulers.mainThread())                                  
        .subscribe(new Consumer<Integer>() {                                        
            @Override                                                               
            public void accept(Integer integer) throws Exception {                  
                Thread.sleep(2000);                                                 
                Log.d(TAG, "" + integer);                                           
            }                                                                       
        });                                                                         

这个时候把上游切换到了IO线程中去, 下游到主线程去接收, 来看看运行结果呢:

violence.gif

可以看到, 给上游加了个线程之后, 它就像脱缰的野马一样, 内存又爆掉了.

为什么不加线程和加上线程区别这么大呢, 这就涉及了同步异步的知识了.

当上下游工作在同一个线程中时, 这时候是一个同步的订阅关系, 也就是说上游每发送一个事件必须等到下游接收处理完了以后才能接着发送下一个事件.

当上下游工作在不同的线程中时, 这时候是一个异步的订阅关系, 这个时候上游发送数据不需要等待下游接收, 为什么呢, 因为两个线程并不能直接进行通信, 因此上游发送的事件并不能直接到下游里去, 这个时候就需要一个田螺姑娘来帮助它们俩, 这个田螺姑娘就是我们刚才说的水缸 ! 上游把事件发送到水缸里去, 下游从水缸里取出事件来处理, 因此, 当上游发事件的速度太快, 下游取事件的速度太慢, 水缸就会迅速装满, 然后溢出来, 最后就OOM了.

这两种情况用图片来表示如下:

同步:

同步.png

异步:

异步.png

从图中我们可以看出, 同步和异步的区别仅仅在于是否有水缸.

相信通过这个例子大家对线程之间的通信也有了比较清楚的认知和理解.

源头找到了, 只要有水缸, 就会出现上下游发送事件速度不平衡的情况, 因此当我们以后遇到这种情况时, 仔细思考一下水缸在哪里, 找到水缸, 你就找到了解决问题的办法.


在上一节中, 我们找到了上下游流速不均衡的源头 , 在这一节里我们将学习如何去治理它 . 可能很多看过其他人写的文章的朋友都会觉得只有Flowable才能解决 , 所以大家对这个Flowable都抱有很大的期许 , 其实呐 , 你们毕竟图样图森破 , 今天我们先抛开Flowable, 仅仅依靠我们自己的双手和智慧 , 来看看我们如何去治理 , 通过本节的学习之后我们再来看Flowable, 你会发现它其实并没有想象中那么牛叉, 它只是被其他人过度神化了.

正题

我们接着来看上一节的这个例子:

Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {  //无限循环发送事件
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer<Integer>() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

上一节中我们看到了它的运行结果是直接爆掉了内存, 也明白它为什么就爆掉了内存, 那么我们能做些什么, 才能不让这种情况发生呢.

之前我们说了, 上游发送的所有事件都放到水缸里了, 所以瞬间水缸就满了, 那我们可以只放我们需要的事件到水缸里呀, 只放一部分数据到水缸里, 这样不就不会溢出来了吗, 因此, 我们把上面的代码修改一下:

Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .filter(new Predicate<Integer>() {
                    @Override
                    public boolean test(Integer integer) throws Exception {
                        return integer % 10 == 0;
                    }
                })
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer<Integer>() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

在这段代码中我们增加了一个filter, 只允许能被10整除的事件通过, 再来看看运行结果:

filter.gif

可以看到, 虽然内存依然在增长, 但是增长速度相比之前, 已经减少了太多了, 至少在我录完GIF之前还没有爆掉内存, 大家可以试着改成能被100整除试试.

可以看到, 通过减少进入水缸的事件数量的确可以缓解上下游流速不均衡的问题, 但是力度还不够, 我们再来看一段代码:

Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io())
                .sample(2, TimeUnit.SECONDS)  //sample取样
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer<Integer>() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

这里用了一个sample操作符, 简单做个介绍, 这个操作符每隔指定的时间就从上游中取出一个事件发送给下游. 这里我们让它每隔2秒取一个事件给下游, 来看看这次的运行结果吧:

sample.gif

这次我们可以看到, 虽然上游仍然一直在不停的发事件, 但是我们只是每隔一定时间取一个放进水缸里, 并没有全部放进水缸里, 因此这次内存仅仅只占用了5M.

大家以后可以出去吹牛逼了: 我曾经通过技术手段去优化一个程序, 最终使得内存占用从300多M变成不到5M. (≧▽≦)/

前面这两种方法归根到底其实就是减少放进水缸的事件的数量, 是以数量取胜, 但是这个方法有个缺点, 就是丢失了大部分的事件.

那么我们换一个角度来思考, 既然上游发送事件的速度太快, 那我们就适当减慢发送事件的速度, 从速度上取胜, 听上去不错, 我们来试试:

Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                    Thread.sleep(2000);  //每次发送完事件延时2秒
                }
            }
        }).subscribeOn(Schedulers.io())
                .observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer<Integer>() {
                    @Override
                    public void accept(Integer integer) throws Exception {
                        Log.d(TAG, "" + integer);
                    }
                });

这次我们让上游每次发送完事件后都延时了2秒, 来看看运行结果:

sleep.gif

完美 ! 一切都是那么完美 !

可以看到, 我们给上游加上延时了之后, 瞬间一头发情的公牛就变得跟只小绵羊一样, 如此温顺, 如此平静, 如此平稳的内存线, 美妙极了. 而且事件也没有丢失上游通过适当的延时, 不但减缓了事件进入水缸的速度, 也可以让下游充足的时间从水缸里取出事件来处理 , 这样一来, 就不至于导致大量的事件涌进水缸, 也就不会OOM啦.

到目前为止, 我们没有依靠任何其他的工具, 就轻易解决了上下游流速不均衡的问题.

因此我们总结一下, 本节中的治理的办法就两种:

  • 一是从数量上进行治理, 减少发送进水缸里的事件
  • 二是从速度上进行治理, 减缓事件发送进水缸的速度

大家一定没忘记, 在上一节还有个Zip的例子, 这个例子也爆了我们的内存, 现学现用, 我们用刚学到的办法来试试能不能惩奸除恶, 先来看看第一种办法.

先来减少进入水缸的事件的数量:

Observable<Integer> observable1 = Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                }
            }
        }).subscribeOn(Schedulers.io()).sample(2, TimeUnit.SECONDS); //进行sample采样

        Observable<String> observable2 = Observable.create(new ObservableOnSubscribe<String>() {
            @Override
            public void subscribe(ObservableEmitter<String> emitter) throws Exception {
                emitter.onNext("A");
            }
        }).subscribeOn(Schedulers.io());

        Observable.zip(observable1, observable2, new BiFunction<Integer, String, String>() {
            @Override
            public String apply(Integer integer, String s) throws Exception {
                return integer + s;
            }
        }).observeOn(AndroidSchedulers.mainThread()).subscribe(new Consumer<String>() {
            @Override
            public void accept(String s) throws Exception {
                Log.d(TAG, s);
            }
        }, new Consumer<Throwable>() {
            @Override
            public void accept(Throwable throwable) throws Exception {
                Log.w(TAG, throwable);
            }
        });

来试试运行结果吧:

zip_sample.gif

哈哈, 成功了吧, 再来用第二种办法试试.

这次我们来减缓速度:

Observable<Integer> observable1 = Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                for (int i = 0; ; i++) {
                    emitter.onNext(i);
                    Thread.sleep(2000);  //发送事件之后延时2秒
                }
            }
        }).subscribeOn(Schedulers.io());

        Observable<String> observable2 = Observable.create(new ObservableOnSubscribe<String>() {
            @Override
            public void subscribe(ObservableEmitter<String> emitter) throws Exception {
                emitter.onNext("A");
            }
        }).subscribeOn(Schedulers.io());

        Observable.zip(observable1, observable2, new BiFunction<Integer, String, String>() {
            @Override
            public String apply(Integer integer, String s) throws Exception {
                return integer + s;
            }
        }).observeOn(AndroidSchedulers.mainThread()).subscribe(new Consumer<String>() {
            @Override
            public void accept(String s) throws Exception {
                Log.d(TAG, s);
            }
        }, new Consumer<Throwable>() {
            @Override
            public void accept(Throwable throwable) throws Exception {
                Log.w(TAG, throwable);
            }
        });

来看看运行结果吧:

zip_sleep.gif

果然也成功了, 这里只打印出了下游收到的事件, 所以只有一个. 如果你对这个结果看不懂, 请自觉掉头看前面几篇文章.

通过本节的学习, 大家应该对如何处理上下游流速不均衡已经有了基本的认识了, 大家也可以看到, 我们并没有使用Flowable, 所以很多时候仔细去分析问题, 找到问题的原因, 从源头去解决才是最根本的办法. 后面我们讲到Flowable的时候, 大家就会发现它其实没什么神秘的, 它用到的办法和我们本节所讲的基本上是一样的, 只是它稍微做了点封装.

好了, 今天的教程就到这里吧, 下一节中我们就会来学习你们喜闻乐见的Flowable.


weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值