目录 引言 一、对抗学习的核心:生成器 vs 判别器 二、数学上的对抗实现 2.1 生成器(G) 2.2 判别器(D) 三、网络结构与代码实现 3.1 生成器网络(以生成图像为例) 3.2 判别器网络 3.3 数据处理与训练 四、训练与推理过程 4.1 原理 4.2 训练过程 4.3 推理过程 4.4 噪声如何影响生成 4.4.1 随机噪声与生成过程的关系 4.4.2 对风格相关特征的影响 4.4.3 改进模型对风格的显式控制 五、典型应用 六、优势与挑战 6.1 优势 6.2 挑战 总结 引言 在机器学习的广阔领域中,对抗学习以其独特的“博弈”思想脱颖而出。生成对抗网络(GAN)作为其经典代表,宛如一场“猫鼠游戏”——生成器努力“造假”,判别器全力“打假”,二者在对抗中共同进化。 一、对抗学习的核心:生成器 vs 判别器 想象一个生活化场景:生成器(G)是“造假者”,目标是伪造一幅以假乱真的名画;判别器(D)是“鉴宝专家”,任务是区分真画与假画。 第一轮:生成器随便画一幅(质量差),判别器一眼识假,给低分。