子集生成算法

子集生成三方法
本文介绍了子集生成的三种常用方法:构造增量法、位向量法和二进制法,并给出了每种方法的实现代码。构造增量法通过逐个添加元素来构建子集;位向量法使用数组下标代表元素,数组值0或1表示是否选取;二进制法则利用二进制位来表示元素的选择状态。

子集生成的三种方法

 

  • 构造增量法
  • 位向量法
  • 二进制法
构造增量法:
要点定序,每次向子集中添加一个元素
代码:
#include<iostream>
using namespace std;
int bit=0;
int arr[4]={0};
void sub_set(int cur,int *arr,int n)//cur为当前下标位置,n为位向量长度 
{
		for(int i=0;i<cur;i++)
			cout<<arr[i]<<' ';
			cout<<endl;
		int s=(cur?arr[cur-1]+1:0);//选择一个最小的元素下标添加(这里即前一个元素+1)	
		for(int i=s;i<n;i++){//无法添加即终止递归了 
			arr[cur]=i;
			sub_set(cur+1,arr,n); 
			
		}	
}

int  main()
{
	sub_set(0,arr,4);
}

 
 
位向量法:
要点用数组下标代表所有元素,数组值0或1表示取或不取该元素
代码:
#include<iostream>
using namespace std;
int bit=0;
int arr[4]={0};
void sub_set(int cur,int *arr,int n)//cur为当前下标位置,n为位向量长度 
{
		if(cur==n) 
		{ 
			for(int i=0;i<n;i++) 
			if(arr[i])
			cout<<i<<' '; 
			cout<<endl;
			return;
		}
		arr[cur]=1;
		sub_set(cur+1,arr,n);
		arr[cur]=0;
		sub_set(cur+1,arr,n); 
}

int  main()
{
	sub_set(0,arr,4);
}

 
 
二进制法:
要点类似位向量法,只是用bit位代替每个数组下标
代码:
void sub_set(int cur,int n)
{
                int bit=0;
		for(int j=0;j<(1<<n);j++){
			for(int i=0;i<n;i++)
			if(bit&(1<<i))//遍历所有位,与运算为1的位下标在该子集中
			cout<<i<<' ';
			cout<<endl;
			bit++;	
		}
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值