课堂问题:一个凸函数的性质

对于凸函数, ∀ x , y , f ( λ x + ( 1 − λ ) y ) ≤ λ f ( x ) + ( 1 − λ ) f ( y ) \forall x,y,f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y) x,y,f(λx+(1λ)y)λf(x)+(1λ)f(y),其中 λ ∈ [ 0 , 1 ] \lambda \in [0,1] λ[0,1].
对于函数 f : R n → R f:R^n \rightarrow R f:RnR 和 函数 ϕ : R → R \phi:R \rightarrow R ϕ:RR,存在 t ∈ R , v ∈ R n , x ^ ∈ R n t \in R,v \in R^n, \widehat{x} \in R^n tR,vRn,x Rn,满足 ϕ ( t ) = f ( x ^ + t v ) \phi(t)=f(\widehat{x}+tv) ϕ(t)=f(x +tv)
证明: f f f 是凸函数    ⟺    \iff ϕ \phi ϕ 是凸函数(convex).

证:(1) f f f 是凸函数 ⟹ \Longrightarrow ϕ \phi ϕ 是凸函数
由于 f f f 是凸函数,有 f ( λ x + ( 1 − λ ) y ) ≤ λ f ( x ) + ( 1 − λ ) f ( y ) f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y) f(λx+(1λ)y)λf(x)+(1λ)f(y) 对于任意的 x,y 均成立,
x = x ^ + v x x=\widehat{x}+vx x=x +vx y = x ^ + v y y=\widehat{x}+vy y=x +vy任意情况都成立,部分特殊情况也肯定成立),代入上式,合并同类项,
⟹ \Longrightarrow f ( λ ( x ^ + v x ) + ( 1 − λ ) ( x ^ + v y ) ) ≤ λ f ( x ^ + v x ) + ( 1 − λ ) f ( x ^ + v y ) f(\lambda (\widehat{x}+vx)+(1-\lambda)(\widehat{x}+vy))\leq \lambda f(\widehat{x}+vx)+(1-\lambda)f(\widehat{x}+vy) f(λ(x +vx)+(1λ)(x +vy))λf(x +vx)+(1λ)f(x +vy)
⟹ \Longrightarrow f ( x ^ + ( λ x + ( 1 − λ ) y ) ) v ) ≤ λ f ( x ^ + v x ) + ( 1 − λ ) f ( x ^ + v y ) f(\widehat{x}+(\lambda x+(1-\lambda)y))v)\leq \lambda f(\widehat{x}+vx)+(1-\lambda)f(\widehat{x}+vy) f(x +(λx+(1λ)y))v)λf(x +vx)+(1λ)f(x +vy)
由于 ϕ ( t ) = f ( x ^ + t v ) \phi(t)=f(\widehat{x}+tv) ϕ(t)=f(x +tv)
⟹ \Longrightarrow ϕ ( λ x + ( 1 − λ ) y ) ≤ λ ϕ ( x ) + ( 1 − λ ) ϕ ( y ) \phi(\lambda x+(1-\lambda)y)\leq \lambda \phi(x)+(1-\lambda)\phi(y) ϕ(λx+(1λ)y)λϕ(x)+(1λ)ϕ(y)
⟹ \Longrightarrow ϕ \phi ϕ 是凸函数(convex)

(2) ϕ \phi ϕ 是凸函数 ⟹ \Longrightarrow f f f 是凸函数
⟹ \Longrightarrow ϕ ( λ x + ( 1 − λ ) y ) ≤ λ ϕ ( x ) + ( 1 − λ ) ϕ ( y ) \phi(\lambda x+(1-\lambda)y)\leq \lambda \phi(x)+(1-\lambda)\phi(y) ϕ(λx+(1λ)y)λϕ(x)+(1λ)ϕ(y)
⟹ \Longrightarrow f ( x ^ + ( λ x + ( 1 − λ ) y ) ) v ) ≤ λ f ( x ^ + v x ) + ( 1 − λ ) f ( x ^ + v y ) f(\widehat{x}+(\lambda x+(1-\lambda)y))v)\leq \lambda f(\widehat{x}+vx)+(1-\lambda)f(\widehat{x}+vy) f(x +(λx+(1λ)y))v)λf(x +vx)+(1λ)f(x +vy)
⟹ \Longrightarrow f ( λ ( x ^ + v x ) + ( 1 − λ ) ( x ^ + v y ) ) ≤ λ f ( x ^ + v x ) + ( 1 − λ ) f ( x ^ + v y ) f(\lambda (\widehat{x}+vx)+(1-\lambda)(\widehat{x}+vy))\leq \lambda f(\widehat{x}+vx)+(1-\lambda)f(\widehat{x}+vy) f(λ(x +vx)+(1λ)(x +vy))λf(x +vx)+(1λ)f(x +vy)
这里 x ^ + v x \widehat{x}+vx x +vx x ^ + v y \widehat{x}+vy x +vy 可取到任意实数,
⟹ \Longrightarrow f ( λ x + ( 1 − λ ) y ) ≤ λ f ( x ) + ( 1 − λ ) f ( y ) f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y) f(λx+(1λ)y)λf(x)+(1λ)f(y)
⟹ \Longrightarrow f f f 是凸函数

证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

u小鬼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值