动态手势检测与识别算法研究思路(草稿)

因近期转战其他研究,不再更新有关研究。更多相关资料请搜索其他资源。
在计算机视觉中,目标检测与识别是图像动态识别算法中重要的组成部分,在人机交互应用中起到重要作用。动态手势识别主要分为两类:手势轨迹跟踪手部动作识别。前者采用手部的运动轨迹表达信息,如摇手的拜拜动作;后者采用手部的动作表达信息,如大拇指和食指做出旋转按钮的动作。当然,两者组合可以完成更加复杂的信息表达。
基于视觉的手势识别一般可分为手势分割、手势分析和手势识别三个阶段。
手势分析阶段主要包括计算手的运动参数、提取手的形状(即手势)等特征参数和建立手势模型等三步。通过手的运动参数和手势参数,可以表达信息。如摇手的拜拜动作,其特征是在水平方向左右摇摆且运动速度比较匀速,手势呈五指平展的状态。再如,向右拨开的动作,其特征是在水平方向从左向右运动,速度较快,且是一次性完成,手势可呈多种状态。
由此可见,手势轨迹跟踪以轨迹信息为主、手势信息为辅,共同完成信息表达;而与之不同的是,手部动作识别只通过手的部分肢体动作完成信息表达,以手部动作为主、运动轨迹为辅甚至要极力避免轨迹信息。在手势分割阶段,主要完成从手势图像序列中检测人手区域并从背景中分离出来。然而,由于手部动作识别是由手部的局部完成的,剔除背景等处理对手部动作识别来说作用不大,有时甚至需要动作部位的深度参数辅助识别。
因此,对于动态手势的研究可以从两方面入手:第一,研究手势轨迹跟踪算法,完成几种典型的手势动作识别,如拜拜、向某一方向拨开等;第二,研究手部动作识别算法,完成几种典型的手部动作识别,如左旋、摇手指等动作。

如有疑问,可留言反馈或通过邮件交流(hardenqiu@foxmail.com)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值