Keras自定义损失函数的4个方法 百度能够找出来的最原始的资源貌似是这个链接,里面提供了三种方法,但是都不能解决目前我的问题,获取是我没看懂吧(主要我的custom损失函数的参数不是简单的y_true,y_pred,又是从中间层计算loss)https://spaces.ac.cn/archives/4493google出来的一个方法惊艳到我了,必须要引用在这里https://stackoverflow.com/questi...
Java命名规范 转载自:https://www.cnblogs.com/zshibo/p/8007123.html一、命名规范1、 项目名全部小写2、 包名全部小写3、 类名首字母大写,如果类名由多个单词组成,每个单词的首字母都要大写。如:public class MyFirstClass{}4、 变量名、方法名首字母小写,如果名称由多个单词组成,每个单词的首字母都要大写。如:int index=0...
【数据结构与算法】子串与子序列问题 1.替换最多k字符,找到最长的xxx字符串问题描述: 有一个01字符串,有之多k次将0替换成1的机会,求最长的全1子串 输入:k=2 s=’1001010101’ 输出:5 (即‘10101’变为‘11111’) 方法1: 本质思想就是:不定长滑动窗口法,但是要保证窗口内0的个数是相同的def deal(s,k): change = 0 left = 0 ...
如何选择排序算法 1.排序算法时间复杂度、空间复杂度、稳定性比较 https://blog.csdn.net/yushiyi6453/article/details/76407640 2.排序算法的分类及如何选择 https://blog.csdn.net/derkampf/article/details/70183450 3.如何选择排序算法 https://www.cnblogs.com/hustdc...
【机器学习】数据处理与特征工程 此外特征工程中还有一个很重要的部分是特征监控,具体不知道怎么做特征有效性分析——特征重要性,权重特征监控——防止特征质量下降,影响模型效果我目前能想到的特征监控的方法大概是,每隔一段时间利用新加进来的数据优化模型时发现有一个之前很重要的特征现在居然不重要了!!!!...
【机器学习】好想彻底搞明白L1/L2正则 1.L1/L2的先验说到先验的概念就不得不提到贝叶斯理论的概念,由于现在大家都是提倡大数据的时代,而数据量越大,贝叶斯理论中先验的力量就会越小,但是实际上大多数模型中,尤其是今天我们说的正则化中都有着贝叶斯理论的影子。但是贝叶斯理论真的很难理解的特别透彻,L1/L2的贝叶斯理论其实就是贝叶斯线性回归啦,不过真正的贝叶斯线性回归是增量学习方法进行优化的,而不是利用梯度下降方法,因为梯度下降方...
【机器学习】常见错误与问题 参考链接: 机器学习常见的六大错误 来源:36大数据 作者:LinkinPark https://www.cnblogs.com/CheeseZH/p/4096546.html机器学习算法需要注意的一些问题(二) https://blog.csdn.net/xmu_jupiter/article/details/47110363 从特征的角度选择机器学习模型 low level覆盖...
决策树-RF-GBDT-XGboost-LightGBM 先记录一些学习过程中看到的比较重要的点,最后再来进行大总结1.xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?答案来源:https://www.jianshu.com/p/005a4e6ac775 也就是说,当我们训练一个模型时,偏差和方差都得照顾到,漏掉一个都不行。 对于Bagging算法来说,由于我们会并行地训练很多不同的分类器的目的就是降低这个方差(va...
连续特征的离散化 与 离散特征的连续化 0.前言GBDT擅长处理连续特征 LR擅长处理海量离散特征 但是整合一个数据集都既有连续特征又有分类特征,这就涉及到连续特征的离散化和离散特征的连续化了1.连续特征离散化2.离散特征连续化这篇论文详细介绍了一种根据变量的各个取值下目标变量的似然概率,将分类变量转化为连续变量的方法:https://kaggle2.blob.core.windows.net/forum-messa...
【算法工程师】面试问题总结 算法部分机器学习部分1.SVM与LR的异同,为什么工业上更喜欢用LR? 2.什么时候需要离散化特征? GBDT VS LR 3.归一化的好处【几种归一化方法的使用场景】深度学习部分1.深度网络的计算量和参数量coding部分1.两个字符串的编辑距离...
推荐系统算法学习(三)——经典模型LR,GBDT+LR,GBDT+FFM 知乎回答:LR,gbdt,libfm这三种模型分别适合处理什么类型的特征,为了取得较好效果他们对特征有何要求? https://www.zhihu.com/question/35821566 参考博客:这些经典模型的优缺点 https://zhuanlan.zhihu.com/p/32689178...
推荐系统算法学习(二)——DNN与FM DeepFM 1.FM 与 DNN和embedding的关系先来复习一下FM 对FM模型进行求解后,对于每一个特征xi都能够得到对应的隐向量vi,那么这个vi到底是什么呢?想一想Google提出的word2vec,word2vec是word embedding方法的一种,word embedding的意思就是,给出一个文档,文档就是一个单词序列,比如 “A B A C B F G”, 希望对文...
推荐系统算法学习(一)——协同过滤(CF) MF FM FFM 1.协同过滤(CF)优点:简单,可解释 缺点:在稀疏情况下无法工作2.MF PMF BPMF优点:更好解决可扩展性和稀疏问题而被广泛用于推荐系统 缺点:矩阵分解时间复杂度高,可采用梯度下降的方法价绍计算复杂度2.1 利用SVD求解MF参考博客:https://www.cnblogs.com/AndyJee/p/7879765.html 任意一个M*N的矩阵A(M行*N...
推荐系统实战阅读笔记(二) 1.用户行为分为显示反馈行为和隐士反馈行为 2.用于行为的统一表示3.实验设计与测评数据集:GroupLens提供的MovieLens数据集 测评指标: 精确率/召回率: 对用户u推荐N个物品(记为R(u)),令用户u在测试集上喜欢的物品集合为T(u),然后可以通过准确率/召回率评测推荐算法的精度 覆盖率:该覆盖率表示最终的推荐列表中包含多大比例的物品...
推荐系统实战阅读笔记(一) 1.什么是推荐系统用户没有明确的需求,你需要的是一个自动化的工具,它可以分析你的历史兴趣,从庞大的电影库中找到几部符合你兴趣的电影供你选择。这个工具就是个性化推荐系统。推荐系统的主要任务 推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢 推荐系统与搜索引擎的区别 和搜索引擎一样,...
面经 1.OPPO职位:AI算法工程师 总体感受:面试官人很nice,OPPO这个部门目前主要做推荐系统和广告推荐的业务,自己这方面啥也不懂,面试官还很耐心的解释,需求不大,OPPO前年在成立的部门,主要关注点不在深度学习,而是机器学习,特别是特征构建和提取。 具体问题: 1.项目说一说 2.手写一个代码:一个数组中如果有两个相同的数且像个相同的数的距离小于k,则输出Yes 3.手写一个背...
深度学习总结(一)各种优化算法 参考博文: 码农王小呆:https://blog.csdn.net/manong_wxd/article/details/78735439 深度学习最全优化方法总结: https://blog.csdn.net/u012759136/article/details/52302426 超级详细每个算法的讲解,可参考: https://blog.csdn.net/tsyccnh/articl...
【目标检测】YOLO系列的进阶与SSD对比 一.YOLO的缺点1.YOLO 虽然能够达到实时的效果,但是其 mAP 与刚面提到的 state of art 的结果有很大的差距。 2.每个网格只预测一个物体,容易造成漏检 3.对于物体的尺度相对比较敏感,对于尺度变化较大的物体泛化能力较差 参考博客:YOLO v1~v3的历程:https://www.cnblogs.com/makefile/p/YOLOv3.html二.SSD...