Chatbox 使用 DeepSeek-V3

### 部署 DeepSeek-V3 的准备工作 为了在本地环境中部署 DeepSeek-V3 模型,需先完成必要的环境配置和依赖安装。具体来说,在 Kubernetes 环境下通过 Pod 启动并进入名为 `prepare` 的容器来准备模型文件是一个常见方法[^1]。 ```bash kubectl exec -it $( kubectl get pod -n deepseek | awk 'NR>1 {print $1}' | grep prepare ) bash -n deepseek ``` 上述命令用于获取指定命名空间内的特定 Pod 并与其建立交互式会话连接,从而允许用户在其内部运行 shell 命令。 ### 安装所需软件包 一旦进入了目标容器之后,则可以继续按照如下指令来进行 Hugging Face 工具链以及相关 Python 库的安装: ```bash pip install huggingface_hub transformers torch ``` 这里不仅限于安装基础的 `huggingface` 包,还额外加入了两个对于加载预训练模型至关重要的库——`transformers` 和 PyTorch (`torch`)。这些组件共同构成了支持后续操作的基础架构。 ### 下载 DeepSeek-V3 模型 准备好环境后,下一步就是实际下载所需的 DeepSeek-V3 模型至本地存储路径 `/model/deepseek-ai/DeepSeek-V3` 中去: ```bash from huggingface_hub import snapshot_download snapshot_download(repo_id="deepseek-ai/DeepSeek-V3", local_dir="/model/deepseek-ai/DeepSeek-V3", resume_download=True) ``` 这段 Python 脚本利用了来自 `huggingface_hub` 库中的函数实现更高效稳定的断点续传功能,确保即使在网络不稳定的情况下也能顺利完成整个过程。 ### 构建完整的推理服务 最后一步涉及创建一个能够提供 API 接口的服务端程序以便其他应用程序调用此大型语言模型的能力。这通常意味着编写一段基于 FastAPI 或 Flask 等 Web 框架的应用代码,并将其打包成 Docker 映像发布出去供他人使用。 考虑到官方已经提供了较为成熟的解决方案,建议访问 Chatbox AI 官网了解更多关于如何快速搭建此类应用的信息[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值