目录
1. Numpy数组
可以直接用Python列表来创建数组。
import numpy as np
a = np.array([1,2,3,4])
a
Out[3]: array([1, 2, 3, 4])
b = np.array([[1, 2], [3, 4], [5, 6]])
b
Out[5]:array([[1, 2],
[3, 4],
[5, 6]])
可以查看array的属性,包括数据的维度和类型。
b.ndim
Out[6]: 2
b.shape
Out[7]: (3, 2)
b.dtype # 查看数组里元素的数据类型
Out[8]: dtype('int32')
也可以使用Numpy提供的函数来创建数组。
c = np.arange(10) # 创建连续数组
c
Out[9]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
a = np.arange(0, 51 ,10) # 3个参数表示起始、结束和步长,不包含结束位置
a
Out[5]: array([ 0, 10, 20, 30, 40, 50])
d = np.linspace(0, 2, 11) # [0, 2] 分成 11 等分后的数组
d
Out[11]: array([ 0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. ])
np.ones((3, 3)) # 注意参数两边的括号,参数是个元组
Out[12]: array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
np.zeros((3, 6))
Out[13]: array([[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.]])
np.eye(4)
Out[14]: array([[ 1., 0., 0., 0.],
[ 0., 1., 0., 0.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 1.]])
np.random.randn(6, 4) # 创建6×4的随机数组
Out[17]: array([[-0.49815866, -0.34571599, -0.44144955, 0.28833876],
[ 1.48639293, -0.56259401, -0.32584788, 0.39799156],
[ 1.35458161, -1.21808153, -0.17011994, 0.95870198],
[-1.36688808, 0.75892299, -1.25336314, -1.12267624],
[-2.24057506, -0.25099611, 1.6995657 , -0.14504619],
[ 0.52316692, -1.55100505, 0.65085791, -1.45710045]])
Numpy提供了灵活的索引机制来访问数组内的元素。
In [23]: a = np.arange(10)
In [24]: a
Out[24]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [25]: a[0], a[3], a[-1]
Out[25]: (0, 3, 9)
In [26]: a[:4] # 半开闭区间,不包含最后一个元素
Out[26]: array([0, 1, 2, 3])
In [27]: a[3:7]
Out[27]: array([3, 4, 5, 6]) #不包含最后一个元素
In [28]: a[6:]
Out[28]: array([6, 7, 8, 9])
In [29]: a[2:8:2] # 3个参数表示起始、结束和步长,不包含结束位置
Out[29]: array([2, 4, 6])
In [30]: a[2::2] # 结束位置可以省略
Out[30]: array([2, 4, 6, 8])
In [31]: a[::3] # 开始和结束都省略
Out[31]: array([0, 3, 6, 9])
二维数据的索引分成行和列两个维度,会更灵活一些。
# 创建一个6行6列的二维数据,使用了广播机制,后文介绍
a = np.arange(0, 51, 10).reshape(6, 1) + np.arange(6)
a
Out[10]:
array([[ 0, 1, 2, 3, 4, 5],
[10, 11, 12, 13, 14, 15],
[20, 21, 22, 23, 24, 25],
[30, 31, 32, 33, 34, 35],
[40, 41, 42, 43, 44, 45],
[50, 51, 52, 53, 54, 55]])
a[0, 0], a[2, -1]
Out[11]: (0, 25)
a[0, 2:5]
Out[12]: array([2, 3, 4])
a[:3, 3:]
Out[13]:
array([[ 3, 4, 5],
[13, 14, 15],
[23, 24, 25]])
a[2, :]
Out[14]: array([20, 21, 22, 23, 24, 25])
a[:, 3] #结果应该是列向量,但 Numpy 自动转换行向量形式
Out[15]: array([ 3, 13, 23, 33, 43, 53])
a[:, ::2]
Out[16]:
array([[ 0, 2, 4],
[10, 12, 14],
[20, 22, 24],
[30, 32, 34],
[40, 42, 44],
[50, 52, 54]])
a[::2, ::3]
Out[17]:
array([[ 0, 3],
[20, 23],
[40, 43]])
另外一个索引的方法是通过布尔数组。
a = np.random.randint(10, 20, 6) # 在 [10, 20] 之间产生 6 个随机数
a
Out[19]: array([19, 19, 16, 15, 11, 19])
a % 2 == 0
Out[20]: array([False, False, True, False, False, False], dtype=bool)
a[a % 2 == 0]
Out[21]: array([16])
2. Numpy运算
最简单的数值计算是数组和标量进行计算,计算过程是直接把数组里的元素和标量逐个进行计算。
a = np.arange(6)
a
Out[4]: array([0, 1, 2, 3, 4, 5])
a+5
Out[5]: array([ 5, 6, 7, 8, 9, 10])
a*2
Out[6]: array([ 0, 2, 4, 6, 8, 10])
另外一种是数组和数组的运算,如果数组的维度相同,那么在组里对应位置进行逐个元素的数学运算。
a = np.random.randint(1, 5, (5, 4))
a
Out[9]:
array([[3, 4, 3, 2],
[3, 4, 3, 2],
[4, 4, 2, 4],
[1, 2, 4, 3],
[1, 4, 3, 2]])
b = np.ones((5, 4), dtype=int)
b
Out[11]:
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
a+b # 数组加法
Out[12]:
array([[4, 5, 4, 3],
[4, 5, 4, 3],
[5, 5, 3, 5],
[2, 3, 5, 4],
[2, 5, 4, 3]])
c=b*2
c
Out[14]:
array([[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]])
a*c # 数组相乘,逐元素相乘,不是矩阵内积运算
Out[16]:
array([[6, 8, 6, 4],
[6, 8, 6, 4],
[8, 8, 4, 8],
[2, 4, 8, 6],
[2, 8, 6, 4]])
需要注意的是,乘法是对应元素相乘,不是矩阵内积,矩阵内积使用的是np.dot()函数。
a = np.random.randint(1, 5, (3, 2))
b = np.random.randint(1, 5, (2, 3))
a
Out[19]:
array([[1, 1],
[4, 3],
[1, 2]])
b
Out[20]:
array([[1, 4, 1],
[4, 1, 2]])
np.dot(a,b)
Out[21]:
array([[ 5, 5, 3],
[16, 19, 10],
[ 9, 6, 5]])
如果数组的维度不同,则Numpy会试图使用广播机制来匹配,如果能匹配得上,就进行运算;如果不满足广播条件,则报错。
符合广播的条件是两个数组必须有一个维度可以扩展,然后在这个维度上进行复制,最终复制出两个相同维度的数组,再进行运算。作为广播的一个特例,当一个二维数组和一个标量进行运算时,实际上执行的也是广播机制,它有两个维度可扩展,先在行上进行复制,再在列上进行复制,最终复制出和待运算的二维数组维度相同的数组后,再进行运算。
a = np.random.randint(1, 5, (3, 2))
a
Out[19]:
array([[1, 1],
[4, 3],
[1, 2]])
b = np.arange(2)
b
Out[23]: array([0, 1])
a+b # 3*2 数组与 1*2 数组的加法,都是两列,满足广播条件,逐行相加
Out[24]:
array([[1, 2],
[4, 4],
[1, 3]])
c = np.arange(3)
a+c # 3*2 数组与 1*3数组加法,不满足广播条件,报错
Traceback (most recent call last):
File "<ipython-input-26-637545a26abd>", line 1, in <module>
a+c
ValueError: operands could not be broadcast together with shapes (3,2) (3,)
c = np.arange(3).reshape(3, 1)
a+c # 3*2 数组与 3*1数组加法,都是三行,满足广播条件
Out[28]:
array([[1, 1],
[5, 4],
[3, 4]])
a = np.array([1, 2, 3])
b = np.array([4, 2, 2])
a == b
Out[31]: array([False, True, False], dtype=bool)
a > b
Out[32]: array([False, False, True], dtype=bool)
a != b
Out[33]: array([ True, False, True], dtype=bool)
(a == b).all() #且的关系
Out[34]: False
(a == b).any() #或的关系
Out[35]: True
3. Numpy内置函数
Numpy还提供了一些数组运算的内置函数:
a = np.arange(0,8,2)
a
Out[39]: array([0, 2, 4, 6])
np.cos(a)
Out[40]: array([ 1. , -0.41614684, -0.65364362, 0.96017029])
np.sin(a)
Out[41]: array([ 0. , 0.90929743, -0.7568025 , -0.2794155 ])
np.exp(a)
Out[42]: array([ 1. , 7.3890561 , 54.59815003, 403.42879349])
np.sqrt(a)
Out[43]: array([ 0. , 1.41421356, 2. , 2.44948974])
a = np.arange(0,8,2)
a
Out[39]: array([0, 2, 4, 6])
a.sum() #求和
Out[44]: 12
a.min() #最小值
Out[46]: 0
a.max() #最大值
Out[47]: 6
a.mean() #平均数
Out[48]: 3.0
a.std() #标准差
Out[49]: 2.2360679774997898
a.argmin() #最小值元素所在的索引
Out[50]: 0
a.argmax() #最大值元素所在的索引
Out[51]: 3
针对二维数组或者更高维度的数组,可以根据行或列来计算。 其中,axis参数表示坐标轴,0表示按行计算,1表示按列计算。需要特别注意的是,按列计算后,计算结果Numpy会默认转换为行向量。
b = np.random.randint(1, 5, (2, 3))
b
Out[53]:
array([[4, 4, 1],
[1, 2, 4]])
b.sum()
Out[54]: 16
b.sum(axis=0)
Out[55]: array([5, 6, 5])
b.sum(axis=1)
Out[56]: array([9, 7])
b.sum(axis=1).sum()
Out[57]: 16
b.sum(axis=0).min()
Out[59]: 5
355

被折叠的 条评论
为什么被折叠?



