Python数据科学
风影楼前
无财作力,少有斗智,既饶争时
展开
-
(五)编辑公式神器:Mathpix Snipping Tool & Typora
目录前言举例演示:下载链接:前言最近写博客和论文时,发现编辑公式真的是个很令人头疼的事情,后来发现两款配合使用的编辑公式神器,安利给大家~Mathpix Snipping 是一个OCR软件,可以将截图框里的公式转化成LaTeX(LaTeX是一种基于TEX的排版系统,一般用于编辑数学公式)的代码。Typora是一款简单高效的Markdown编辑器,可以将LaTeX代码转化成可视化的公式,并将其导出到word。文末附有百度云下载链接,亲测可用~举例演示:假设...原创 2020-12-02 08:08:53 · 8454 阅读 · 0 评论 -
(四)Matplotlib基础操作
前言Matplotlib是Python数据可视化工具包。在机器学习领域中,我们经常需要把数据可视化,以便观察数据的模式。此外,在对算法性能进行评估时,也需要把模型相关的数据可视化,才能观察出模型里需要改进的地方。例如,我们把算法的准确度和训练数据集大小的变化曲线画出来,可以清晰地看出训练数据集大小与算法准确度的关系。这就是我们需要学习Matplotlib的原因。1. 基本图表绘制在绘制图表之前要先引入Matplotlib库,相应的代码通常写成“import matplotlib.pyplo...原创 2020-11-29 08:03:19 · 1239 阅读 · 0 评论 -
(三)Pandas基础操作
目录1. 基本数据结构2. 数据排序3. 数据访问4. 文件输入/输出5. 数据表连接1. 基本数据结构 Pandas最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。 import pandas as pds = pd.Series([4, 2, 5, 0, 6, 3])sOut[76]: 0 41 22 53 04 65 3dtype: int64另外一个关键的数据结构..原创 2020-11-28 18:06:14 · 675 阅读 · 0 评论 -
(二)Numpy基础操作
Numpy数组可以直接用Python列表来创建数组。 import numpy as npa = np.array([1,2,3,4])aOut[3]: array([1, 2, 3, 4])b = np.array([[1, 2], [3, 4], [5, 6]])bOut[5]:array([[1, 2], [3, 4], [5, 6]])可以查看array的属性,包括数据的维度和类型。b.ndim Out..原创 2020-11-28 15:48:16 · 305 阅读 · 0 评论 -
(一)机器学习开发步骤
目录1. 什么是机器学习?2.机器学习分哪两类?它们之间有什么区别?3.机器学习应用开发的典型步骤3.1数据采集和标记3.2 数据清洗3.3 特征选择3.4 模型选择3.5 模型训练和测试3.6 模型性能评估和优化3.7 模型使用1. 什么是机器学习?机器学习是一个计算机程序,针对某个特定的任务,从经验中学习,并且越做越好。 从这个理解上,我们可以得出以下针对机器学习最重要的内容。 数据:经验最终要转换为计算机能理解的数据,这样计...原创 2020-11-26 09:47:26 · 828 阅读 · 0 评论 -
Python安装教程(Anaconda)
目录1. 什么是 python2. 什么是 Anaconda3. 如何安装Anaconda4. 测试是否安装成功1. 什么是 pythonpython是一门解释性语言,语法简单,有大量的扩展包,比如处理图像,爬 取网页等等。我们需要安装python的解释器,有了这个解释器,我们才可以开始进行python的编程。2. 什么是 AnacondaAna...原创 2019-07-14 09:43:50 · 1602 阅读 · 0 评论
分享