动态规划:力扣53. 最大连续子序列和

动态规划一定要看清四点:
1.状态定义
2.状态转移方程
3.初始值
4.返回值

其中我们在考虑 状态定义是否合理时,可以结合是否状态转移方程中可以存在已知变量值(可以将状态转移方程落实)。

细节都在代码中:


#include<iostream>

#include<algorithm>
#include<vector>
#include<string>
using namespace std;
class Solution {
public:


	int longetseriessum(vector<int> origin_v) {
		//状态定义  dp[i]  以origin_v[i] 结尾连续数组最长和

		//状态转移方程  dp[i]
		//if (dp[i - 1] > 0)  dp[i] = dp[i - 1] + origin_v[i];
		//else  dp[i]= origin_v[i];


		//初始值 dp[i]=origin_v[0]

		//返回值  将dp[i]中的最大数取出来即可

		vector<int > dp(origin_v.size(), 0);
		if (origin_v.size() == 0)
		{

			return  0;
		}
		int longmax_sum = origin_v[0];
		dp[0] = origin_v[0];
		for (int i = 1;i < origin_v.size();i++)
		{
			if (dp[i - 1] > 0)
			{
				dp[i] = dp[i - 1] + origin_v[i];
			}
			else
			{
				dp[i] = origin_v[i];
			}


			longmax_sum = max(longmax_sum, dp[i]);

		}


		return longmax_sum;



	}

};

int main()
{
	Solution s;
	vector<int> v{ -2,1,-3,4,-1,2,1,-5,4 };
	//vector<int> v{ 2,-1,5 };
	int max_sum = s.longetseriessum(v);
	cout << "max_sum=" << max_sum << endl;

}
在LeetCode(力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值