第三十三讲 非线性方程组化为一阶方程 一,预备知识非线性自治微分方程组:{dxdt=f(x,y)dydt=g(x,y)\left\{\begin{matrix}\frac{dx}{dt}=f(x,y)\\ \frac{dy}{dt}=g(x,y)\end{matrix}\right.{dtdx=f(x,y)dtdy=g(x,y)图像是一个速度场:F⃗=fi^+gj^\vec{F}=f\widehat{i}+g\widehat...
第三十二讲 极限环 一,预备知识:非线性一阶微分自治方程组的一般形式:{x′=f(x,y)y′=g(x,y)\left\{\begin{matrix}{x}'=f(x,y)\\ {y}'=g(x,y)\end{matrix}\right.{x′=f(x,y)y′=g(x,y)等式右边不显含变量t等式右边是非线性函数(如三角函数、二次项)速度场:F⃗=fi^+gj^=x′...
第三十一讲 非线性微分自治方程组及图解 一,非线性一阶微分自治方程组的一般形式:{x′=f(x,y)y′=g(x,y)\left\{\begin{matrix}{x}'=f(x,y)\\ {y}'=g(x,y)\end{matrix}\right.{x′=f(x,y)y′=g(x,y)等式右边不显含变量t等式右边是非线性函数(如三角函数、二次项)二,例题(含阻尼的非线性摆):如图,一根木...
第二十三讲 解一阶微分方程组 例题{u1′=−u1+2u2u1′=u1−2u2\left\{\begin{matrix}{u_{1}}'=-u_{1}+2u_{2}\\ {u_{1}}'=u_{1}-2u_{2}\end{matrix}\right.{u1′=−u1+2u2u1′=u1−2u2一,将微分方程组化为矩阵形式[u1′u2′]=A[u1u2]=[−121−2][...
第三十讲 解耦 一,线性的变量代换:耦合的方程组:{u=ax+byv=cx+dy\left\{\begin{matrix}u=ax+by\\ v=cx+dy\end{matrix}\right.{u=ax+byv=cx+dy,求u,v解耦后的两个一阶方程:{u′=k1uv′=k2v\left\{\begin{matrix}{u}'=k_{1}u \\ {v}'=k_{2}...
第二十九讲 求方程组通解和特解的公式(矩阵指数) 一,齐次方程组的通解:通解形式:x⃗=c1x1⃗+c2x2⃗\vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}x=c1x1+c2x2用基本矩阵简化为:x⃗=[x1⃗x2⃗][c1c2]=Xc⃗\vec{x}=\begin{bmatrix}\vec{x_{1}} & \vec{x_{2}}\end{bmatrix}\begin{bmat...
第二十八讲 解非齐次线性方程组 一,关于二阶方程组x⃗′=Ax⃗{\vec{x}}'=A\vec{x}x′=Ax的理论(对n阶方程也成立):(假设A是常数矩阵)定理A:x⃗′=Ax⃗{\vec{x}}'=A\vec{x}x′=Ax的通解是x⃗=c1x1⃗+c2x2⃗\vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}x=c1x1+c2x2(x1⃗...
第二十七讲 微分方程组解的图像 一,竞争模型(含参数的微分方程组):{x′=−x+byy′=cx−3y\left\{\begin{matrix}{x}'=-x+by \\ {y}'=cx-3y\end{matrix}\right.{x′=−x+byy′=cx−3y这个模型是上海和北京之间的旅游竞争,两个地方都忙于做广告,想要吸引游客x′{x}'x′代表上海,y′{y}...
第二十六讲 有特殊特征值的微分方程组 一,温度扩散问题:假设有三个房间,房间初始温度分别为:高、中、低,但经过一段时间后,三个房间互相交换热量,最终稳定在同一个温度上。假设房间温度分别为:X1,X2,X3X_{1},X_{2},X_{3}X1,X2,X3,如图:温度Xi(t)X_{i}(t)Xi(t)是时间的函数二,建立微分方程组:根据温度变化率,建立数学模型:X1′=a(X3−X1)+a(X2−X1){X_{1}}...
第二十二讲 对角化分解和幂公式 一,对角化分解A=SΛS−1A=S\Lambda S^{-1}A=SΛS−1A表示具有n个线性无关的x(特征向量)的矩阵S表示由x组成的可逆方阵,称作特征向量矩阵Λ\LambdaΛ表示由A的λ(特征值)作为对角元素的对角矩阵比较:A=LU(消元化分解),A=QR(正交化分解)二,矩阵的幂...
第二十一讲 特征值和特征向量 我个人认为麻省理工线性代数这门课,到二十一讲才真正进入有用的部分,因此从这一讲开始做笔记。一,概念满足条件:Ax=λx解释:当向量x经过矩阵A变换后,效果等于向量x乘上任意常数λ则:x是矩阵A的特征向量,λ是矩阵A的特征值二,性质性质1:如果A是奇异矩阵,且Ax=0,则x是0空间的非0向量,λ=0注:奇异=不可逆=线性相关,非奇异=可逆=线性无关性质2:λ的和=A的迹trace解...
第二十五讲 用线性代数解微分方程组 一,上一讲的例题,如图:设x=T1x=T_1x=T1,y=T2y=T_2y=T2方程组为·:{x′=−2x+2yy′=2x−5y\left\{\begin{matrix}{x}'=-2x+2y\\ {y}'=2x-5y\end{matrix}\right.{x′=−2x+2yy′=2x−5y用消元法求出的通解为:{x=c1e−t+c2e−6ty=1...
第二十四讲 一阶常微分方程组 一,常微分方程组:必须满足:自变量只有1个,因变量有多个 一阶形式:,,x和y是因变量,t是自变量二,什么样的常微分方程组是线性方程组?必须满足:x和y以线性形式出现 例如:,,a、b、c和d可以是t的函数三,什么样的线性方程组是常系数方程组?必须满足:a、b、c和d都是常数 例如:,四,什么样的常系数方程组是齐次的?必须满足:, 例如:,五,初始条件:需要初始...
第二十三讲 狄拉克函数(冲激函数)(补充) 四,例题: 如图,假设没有阻尼,弹簧常数,在的瞬间,输入一个冲量A,单位冲量为 建立数学模型: 初始条件:(初始位置),(初始速度) 第一步:两边拉式变换左边: 代入初始条件:, 左边: 右边:(利用延迟定理1) 左边等于右边:第二步:解出第三步:拉式逆变换(查表) (查表) 因为中含有指数函数,因此要用到逆变换的唯一性 利用延迟定理1: 因此 当时, 当...
第二十三讲 狄拉克函数(冲激函数) 一,脉冲及建立模型在一个时间区间上的作用等于,如果是恒定的,则 如图: 在小车上作用一个脉冲(一个力使小车左移或右移一段时间),假设时间从0到h,冲量是1(曲线下的面积是1)如图: 假设没有阻尼,弹簧常数,建立数学模型(参照第九讲): 因为,是单位方框函数(参考第二十二讲) 所以二,用拉普拉斯变换解这个微分方程(参考第二十讲):初始条件:, 第一步:两边拉氏变换左边...
第二十二讲 延迟定理(补充) 八,计算:已知 因为当时,,因此可以用延迟定理 根据延迟定理1: 同理: 因此九,计算:因为当时,,因此可以用延迟定理 根据延迟定理2: 因此 图像见视频35:00~36:40十,计算: 当表达式中存在指数时,如,就要用到逆变换的唯一性: 利用延迟定理1: 因此 当时,, 当时,, 结果...
第二十二讲 延迟定理 一,单位阶跃函数:如图:,它有三个定义: 设为单位阶跃函数,那么表示单位阶跃函数向右平移a个单位,如图: 二,单位方框函数: 如图: 意义:去掉了在区间以外的部分。三,单位阶跃函数的拉普拉斯变换: 因为当时,,所以: , (查表)四,逆变换的唯一性:如图: 因为拉普拉斯变换只关注这段区间,所以在这段区间内相等的函数,变换后的结果相等(无法区别)...
第二十一讲 卷积公式 一,卷积公式:已知:, 设: 求: 因为拉氏变换是由幂级数变过来的,所以上面的问题可以转换为下面的问题方便计算:已知:, 设: 求:,(求解过程省略)解得卷积公式: 文字解读:两个函数的乘积,等于分别将它们变换后的乘积,再逆变换的结果,由于被变换卷在了一起,因此称为卷积。 满足交换律:二,例1:求: 代入卷积公式: 验证:因为:,, 所以:三,例2:求...