一,齐次方程组的通解:
通解形式: x ⃗ = c 1 x 1 ⃗ + c 2 x 2 ⃗ \vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}} x=c1x1+c2x2
用基本矩阵简化为: x ⃗ = [ x 1 ⃗ x 2 ⃗ ] [ c 1 c 2 ] = X c ⃗ \vec{x}=\begin{bmatrix}\vec{x_{1}} & \vec{x_{2}}\end{bmatrix}\begin{bmatrix}c_{1}\\ c_{2}\end{bmatrix}=X\vec{c} x=[x1x2][c1c2]=Xc
因为线性无关的特征向量有无穷多种,所以基本矩阵也有无穷多种。
通解中全部的基本矩阵表示为: [ X c 1 ⃗ X c 2 ⃗ ] \begin{bmatrix}X\vec{c_{1}} & X\vec{c_{2}}\end{bmatrix} [Xc1Xc2]
[ X c 1 ⃗ X c 2 ⃗ ] = X [ c 1 ⃗ c 2 ⃗ ] = X C \begin{bmatrix}X\vec{c_{1}} & X\vec{c_{2}}\end{bmatrix}=X\begin{bmatrix}\vec{c_{1}} & \vec{c_{2}}\end{bmatrix}=XC [Xc1Xc2]=X[c1c2]=XC,C为2阶方阵,并且|C|≠0(线性无关)
二,解齐次方程组的公式:
一般方程组: x ⃗ ′ = A x ⃗ {\vec{x}}'=A\vec{x} x′=Ax
如果A是一个常数(1阶矩阵),方程组变为: x ′ = a x {x}'=ax x
本文介绍了如何利用矩阵指数求解线性齐次方程组的通解和特解,详细阐述了从1阶矩阵到2阶矩阵的公式推导过程。通过泰勒级数展开证明了公式的有效性,并通过具体例题展示了计算方法。此外,讨论了矩阵指数在解初值问题中的优势以及注意事项,包括矩阵乘法的交换律和求逆特殊情况。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



