阵列信号基础:宽带信号阵列

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_23947237/article/details/82532880

宽带信号阵列

0. 前言

阵列信号处理基础本质上属于参数估计问题,和信道估计知识基本上别无二致。末学在这里整理了阵列信号处理的基础知识。

4. 宽带信号阵列模型1

因为窄带信号的时延信息可以通过相位的变化来体现,而宽带信号则不满足这一假设,所以上面提到的MUSIC/ESPRIT 等算法不适用于宽带信号。现在比较经典的宽带 DOA 估计算法是 ISS 算法和 CSS 算法。

在有 MM 个天线单元的均匀线阵中,第 mm 个阵元接收到的信号可以写为
xm(t)=i=1Ksi(tτm(θi))+nm(t),m=1,2 ,M x_m(t) = \sum_{i=1}^{K} s_i(t-\tau_m(\theta_i))+n_m(t),\quad m=1,2\cdots,M
其中,si(t)s_i(t) 为第 ii 个信源,τm(θi)\tau_m(\theta_i) 为其相对于参考点的时延,θi\theta_i 为其入射角度,KK 为信源数目,nm(t)n_m(t) 为高斯白噪声。因为宽带信号的时延无法用相移来表示,所以需要转换到频域上,表示为
Xm(f)=i=1KSi(f)ej2πfτm(θi)+Nm(f) X_m(f) = \sum_{i=1}^{K} S_i(f)e^{-j2\pi f\tau_m(\theta_i)}+N_m(f)
其中 Si(f)S_i(f)Nm(f)N_m(f) 分别为 si(t)s_i(t)nm(t)n_m(t) 傅里叶变换。我们可以将阵列接收信号的频域模型写成矩阵的形式,令 ej2πfτm(θi)=am(f,θi)e^{-j2\pi f\tau_m(\theta_i)} = a_m(f,\theta_i),可得
X(f)=A(f,θ)S(f)+N(f) X(f) = A(f,\theta)S(f)+N(f)
其中有
A(f)=[a(f,θ1),a(f,θ2), ,a(f,θK)]a(f,θi)=[a1(f,θi),a2(f,θi), ,aM(f,θi)]T \begin{aligned} A(f) &= [a(f,\theta_1),a(f,\theta_2),\cdots,a(f,\theta_K)] \\ a(f,\theta_i) &= [a_1(f,\theta_i),a_2(f,\theta_i),\cdots,a_M(f,\theta_i)]^T \end{aligned}

4.1 非相干信号子空间算法

ISM 算法的核心思想是把一个宽带信号通过 FFT 在频域分解成若干个窄带分量,然后在每一个子带上直接应用窄带 DOA 估计技术进行处理,最后对这若干个结果进行综合,比如所有子带的空间谱进行平均,即可得到最终的 DOA 信息。

根据这个思想,首先把观测时间 T0T_0 内的接收信号分成 LL 段,LL 也称为频域快拍。再对每段作 DFT 分解为 NN 个窄带分量,即得到 LL​ 组互不相关的窄带频域分量,因此可得接收信号频域自相关矩阵的估计值
Rx(fn)=1Ll=1LXl(fn)XlH(fn),1nN R_x(f_n) = \frac{1}{L} \sum_{l=1}^{L}X_l(f_n)X_l^H(f_n),\quad 1 \leq n \leq N
其中 Xl(fn)=A(fn,θ)S(fn)+N(fn)CM×1X_l(f_n) = A(f_n,\theta)S(f_n)+N(f_n) \in \mathbb{C}^{M\times 1}。对其进行特征值分解,可以得到
Rx(fn)=UΛUH=i=1MλiuiuiH R_x(f_n) = U\Lambda U^H = \sum_{i=1}^{M}\lambda_i u_i u_i^H
特征值的大小满足关系 λ1λ2λK>λK+1==λM=σ2\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{K} > \lambda_{K+1}= \cdots = \lambda_{M}=\sigma^{2}。 于是,我们可以构造出两个矩阵,USU_S 称为信号子空间,UNU_N 称为噪声子空间。根据 MUSIC 算法,那么平均谱函数为
P(θ)=11Nn=1NaH(fn,θ)UN(fn)2 P(\theta) = \frac{1}{\frac{1}{N}\sum_{n=1}^{N} \Vert\mathbf a^{H}(f_n,\theta) \mathbf{U}_{N}(f_n)\Vert^2}

4.2 相干信号子空间算法

因为宽带信号的分解得到的子空间与频率有关,使得不同频点上的子空间会不一样,所以 CSM 算法就是要构造一个聚焦矩阵,通过它把不同频点的子空间变换到相同的频点上。同样我们首先需要对阵列接收信号进行 NN 点 FFT 分解成 NN 个窄带分量,那么聚焦矩阵 T(fn)T(f_n) 需要满足

T(fn)A(fn)=A(f0),n=1,2, ,N T(f_n)A(f_n) = A(f_0),\quad n=1,2,\cdots,N
其中,f0f_0 为参考频点。于是经过聚焦变换后的阵列接收信号为
Y(fn)=T(fn)X(fn)=T(fn)A(fn)S(fn)+T(fn)N(fn)=A(f0)S(fn)+T(fn)N(fn) \begin{aligned} Y(f_n) &= T(f_n)X(f_n) \\ &= T(f_n)A(f_n)S(f_n)+T(f_n)N(f_n) \\ &= A(f_0)S(f_n)+T(f_n)N(f_n) \\ \end{aligned}
可知,经过变换后的 Y(fn)Y(f_n) 在任何频点上都有着相同的方向矩阵。于是,我们可以计算出 Y(fn)Y(f_n) 的自相关矩阵:
Ry=1Nn=1NY(fn)YH(fn)=1Nn=1NT(fn)X(fn)XH(fn)TH(fn)=1Nn=1NA(f0)S(fn)SH(fn)AH(f0)+1Nn=1NT(fn)N(fn)NH(fn)TH(fn)=A(f0)[1Nn=1NS(fn)SH(fn)]AH(f0)+1N[n=1NT(fn)N(fn)NH(fn)TH(fn)]=A(f0)[1NRS]AH(f0)+1N[RN] \begin{aligned} R_y &= \frac{1}{N}\sum_{n=1}^{N} Y(f_n)Y^H(f_n) \\ &= \frac{1}{N}\sum_{n=1}^{N} T(f_n)X(f_n)X^H(f_n)T^H(f_n) \\ &= \frac{1}{N}\sum_{n=1}^{N}A(f_0)S(f_n)S^H(f_n)A^H(f_0)+ \frac{1}{N}\sum_{n=1}^{N} T(f_n)N(f_n)N^H(f_n)T^H(f_n) \\ &= A(f_0) \left[ \frac{1}{N} \color{#00F}{\sum_{n=1}^{N}S(f_n)S^H(f_n)} \right]A^H(f_0)+ \frac{1}{N} \left[\color{#00F}{\sum_{n=1}^{N} T(f_n) N(f_n)N^H(f_n) T^H(f_n)}\right] \\ &= A(f_0) \left[\frac{1}{N} \color{#00F}{R_S} \right]A^H(f_0)+ \frac{1}{N} \left[\color{#00F}{R_N} \right] \end{aligned}
同样地,我们对构造的矩阵束 {Ry,RN}\{ R_y,R_N \} 进行广义特征值分解,从而构造出信号子空间 USU_S 以及噪声子空间 UNU_N。此时可得谱函数
P(θ)=1aH(f0,θ)UN2 P(\theta) = \frac{1}{\Vert\mathbf a^{H}(f_0,\theta) \mathbf{U}_{N}\Vert^2}
接下来给出一种聚焦矩阵的构造方法。首先对所有信源的 DOA 进行预估计,计算出它们的平均值 θ^\hat{\theta},那么聚焦矩阵为
T=(a1(f0,θ^)/a1(fn,θ^)aM(f0,θ^)/aM(fn,θ^)) T = \begin{pmatrix} a_1(f_0,\hat\theta)/a_1(f_n,\hat\theta) & &\\ & \ddots &\\ & & a_M(f_0,\hat\theta)/a_M(f_n,\hat\theta) \end{pmatrix}

参考文献


  1. 毫米波低复杂度 DOA 估计与波束成形技术的研究 ↩︎

展开阅读全文

没有更多推荐了,返回首页