5G 中的 MIMO “波束成形” 是个什么玩意

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_23947237/article/details/88395034

“波束成形” 是个什么玩意


未来无线通信的背景

5G/+5G 主要引入了 Massive MIMO,以及毫米波技术。

  • MIMO 技术特点是可以在基站端配备几根或者数十根天线阵元,并且这些天线在发送信号时都是相互独立的,同时从发射端传来的信号将会被接收端多根天线阵元接收,然后通过其他技术恢复出有效的原始信号。Massive MIMO 技术则通过增加基站端的天线数量,扩展系统空间自由度,降低噪声、小区内干扰等。Massive MIMO 系统的信号处理方法不需要再采用复杂的非线性设计来避免干扰,而只需要简单的线性设计即可实现较好的系统性能。

  • 对于 Massive MIMO 系统来说,提高天线增益对于获取较为精准的信道状态信息有着不可忽视的重要性,当 Massive MIMO 系统在基站端配置大量天线的时候,不仅提高系统硬件的复杂度,还加大了成本消耗,对于这点学术工作者主要结合毫米波特性,可以采用均匀天线阵列,形成波束信号来降低使用基站端射频(RF)链路,同时还可以增大天线的增益。
    但 Massive MIMO 系统在基站端增加天线数量之后,获取信道状态信息就不是那么容易,考虑到下行链路导频资源的消耗问题和毫米波的衰落问题,在研究 Massive MIMO 系统的时候通常采用 TDD 系统模型

a. 大规模 MIMO

大规模 MIMO,又叫做 massive MIMO,或 large-scale MIMO。相比传统的 MIMO,大规模 MIMO 在基站端增加了天线阵元的数量。

上世纪 90 年代在雷达通信系统中就开始被研究 MIMO 技术。MIMO 通信系统改进是在基站端配置比单天线大好几十倍数量级的多根天线阵列,并且在发送原始信号的时候,基站端的天线可以发送不相关的信号波束,也就是说这些信号在空间传输时候是独
立,互不干扰,在用户设备处同样也安装有好几根阵元天线来接收信号,这样就可以实现以更小的代价达到更高的用户速率。MIMO 技术利用多根天线扩展了通信系统空间域的自由度,充分挖掘空间资源,这样就可以不需要增强基站的发射功率,同时发送信号也不用增加额外的导频序列信号重复传送信号,从而能够显著的提高频谱资源的利用率,改善系统的信道传输容量。

Massive MIMO 系统为了获得更大的增益在发射端可以布置庞大数量的天线。在 Massive MIMO 系统中,随着天线数量增加可以屏蔽非相关噪声的影响与小尺度衰落,并且每个天线阵元的发送功率也会随之变小。

大规模 MIMO 系统相比传统 MIMO 的优点:

  • 减轻衰落:Massive MIMO 系统中天线数量多达上百根,信号陷入小尺度衰落的概率比较小,小尺度衰落的影响可能被屏蔽掉,于此系统性能将只与大尺度衰落紧密相关。
  • 降低了系统成本、功耗和复杂度:Massive MIMO 有大量剩余自由度,降低对放大器和射频链路的精确度和线性度的要求。Massive MIMO 系统采用小型有源天线单元,成本比传统 MIMO 系统要低。此外,Massive MIMO 可以采用简单的线性处理,如最大比发送或者接收就可以实现系统的最优性能,简化了系统的复杂度。
  • 降低干扰:Massive MIMO 随着基站安装的天线数目累加增多,传播的信号导频逐渐呈现正交性,小区内用户之间干扰就会大大降低同时可在基站侧使用波束成形技术,将大量天线的能量集中于较小的空间域,形成比较窄的小范围内的信号波束对准目标用户,增强信号在空间的正交性,抑制干扰。

Massive MIMO 系统的不足:

  • 信道估计准确性:参考信号开销、信道的变化速度、覆盖环境的复杂度、信道估计精确度、反馈信息的时延以及反馈开销、计算量都是影响 CSI 准确性的关键因素。
  • 计算复杂度:信道估计算法随着天线数量的不断增加,人们对其优化要求也越来越高,导致计算复杂度加大 。
  • 导频污染:Massive MIMO 在 TDD 模式下存在导频污染问题。系统连接用户增多,增加导频的负载,提升导频污染,因而寻求如何更有效的降低导频污染的算法也是刻不容缓。

b. 毫米波

毫米波频段的天线尺寸很小,为配备大规模天线阵列提供了可能。在毫米波系统中,由于信号波长比上述系统小,在同样大小的设备上可以方便地安装大量的天线:通常的天线数量范围为 32 个至 256个,形成所谓的大规模 MIMO。基站天线数量可远大于用户数,故系统可以获得很高的复用增益、分集增益和阵列增益。另外,大规模 MIMO 能够将信号能量聚焦在很窄的波束上,有效地提升了能量效率。

在大规模 MIMO 系统中,预编码技术是下行链路中至关重要的信号处理技术,其利用发送端的信道状态信息(CSI),将调制过的符号流变换成适应当前信道的数据流,将信号能量集中到目标用户附近,有效对抗衰减和损耗,提升了系统性能。

在毫米波系统中,MIMO 的体系结构与低频段 MIMO 有一些不同之处,这些不同之处至关重要。在低频段 MIMO 系统中,所
有的信号处理都在基带进行,用数字信号处理技术实现

根据预编码矩阵作用于基带或射频可将预编码方案分为

  • 数字基带预编码 DBF
    考虑接收机端,数字基带预编码是在模数转换(ADC)之后用矩阵处理调制的符号流。该方案要求 RF 链数量和天线数目相同,能达到很好的系统性能。在数字基带预编码中,传统的线性和非线性预编码都可以直接应用到大规模 MIMO 系统中,但非线性预编码的计算复杂度过高,线性方案更占优势。
    1
  • 模拟射频预编码 ABF
    考虑接收机端,模拟预编码是在模数转换(ADC)之前对输入符号流进行处理。该技术在毫米波大规模 MIMO 系统的收发两端采用移相器网络将天线阵列与一个 RF 链相连,从而能够执行模拟预处理。虽然该技术在一定程度上降低了系统的能量消耗和成本,但其只支持单数据流传输,且不能提供空间多路复用增益。这类方案可将多根天线同时连到一条 RF 链上,非常适用于大规模 MIMO 系统天线数很多的情况,能显著降低系统硬件成本,且计算复杂度较低。模拟预编码能显著减少系统硬件开销,但需要牺牲部分性能。
    2
  • 混合预编码
    混合预编码作为近年来兴起的方案,能结合数字预编码和模拟预编码的优点,在硬件开销和系统性能之间折中。
    3
    图中都忽略了毫米波功率放大器(PA)与低噪放大器(LNA)。

c. 预编码 = 波束成形 ?

precoding 和 beamforming 不相同!他们属于不同的技术领域,但现有不少文献总把 precoding 和 beamforming 等同。

  • beamforming 是阵列信号处理领域的。
  • precoding 是通信系统里解决 ISI 问题的,是纯正的通信问题。

由于相同的数学表述形式,所以后来把 beamforming 和 MIMO precoding 混淆甚至等同。但是,和具有收发对的通信系统不同,beamforming 可以完全不管另一端的设计,它只考虑本端天线的功能,而 precoding 需要联合考虑接收端与发端。在毫米波通信混合预编码中,在数字基带那里为了实现空间复用多流传输进行的是 precoding,而在模拟部分用相控阵代替原来单天线则是真正的 beamforming 功能。

因此,我们也不做太细的区分了。

毫米波 Massive MIMO 系统中的 波束成形

系统基站端布置大量天线,然后通过波束成形预处理的方式对来自不同方向的信号进行加权合成之后可以将每个信号的功率集中在某个特定的波束域空间进行发射,形成一个较为集中窄波信号,不仅传输距离更远了,而且还避免了信号的干扰。
下面以 ULA 参考链接 为例:
假设接收天线第一个阵元接收到的信号为 x1x_1,则按照 ULA 的阵列导向矢量 A(θ)\mathbf A(\theta),天线阵所有接收信号为
x=[x1,x2, ,xN]T=A(θ)x1\mathbf x =\left[x_1,x_2,\cdots,x_N\right]^T = \mathbf A(\theta) x_1

ULA

接收信号经过加权处理,最后得到信号加权和:
y=wTx+ny =\mathbf w^T \mathbf x+ n

波束成形要达到的目标是寻找一个合适的权向量,使得输出 yy 符合某种性能指标,例如最大化接收信噪比(SNR)。

一个例子

model
考虑如图所示的点对点 MIMO 波束成形系统,假设发射端有 NtN_t 根天线,NrN_r 根接收天线,发射端发送已调复数信息向量为 x\mathbf x,经过发射波束成形矩阵 F\mathbf F 的作用后加载到发射天线的各个阵元上,经过 MIMO 信道 H\mathbf H 后的接收信号向量为:
y=HFx+n\mathbf {y = HFx+n}

在接收端使用接收波束成形矩阵 W\mathbf W 对接收信号进行加权合并运算:
WHy=WHHFx+WHn\mathbf W^H \mathbf y = \mathbf W^H\mathbf {HFx}+ \mathbf W^H \mathbf n

利用 SVD 参考链接 方法来看 MIMO。如果 Hn×m\mathbf H_{n\times m},即发射天线 mm 根,接收端为 nn 根。则
H=UΣVH\mathbf H = \mathbf{U \Sigma V}^H

  • Σn×m\mathbf{\Sigma }_{n\times m} 的对角线为非负实数,称为奇异值,从大到小排列。
  • UUH=UHU=In\mathbf{UU}^H=\mathbf{U}^H\mathbf{U} = \mathbf I_{n}
  • VVH=VHV=Im\mathbf{VV}^H=\mathbf{V}^H\mathbf{V} = \mathbf I_{m}

这样的话,发射机如果知道信道矩阵,就可以推出 SVD,并用 V\mathbf V 进行编码,得到新的发射信号x=Vx\mathbf x^* =\mathbf {Vx}
y=UΣVHVx+n=UΣx+n{\mathbf y = \mathbf{U\Sigma V^H Vx}+\mathbf n}=\mathbf {U\Sigma x+n}
接收机再通过 U\mathbf U 进行解码:
UHy=UHUΣx+UHny=Σx+n \mathbf {U^H y = U^H U \Sigma x + U^H n} \\ \mathbf{y^* = \Sigma x + n}^*

从预编码到波束成形

信道矩阵的能够同时发送的数据个数,每一个数据叫做一个流(stream),每个流可以单独进行编码调制。为了控制流的个数,采用一个编码矩阵 F\mathbf F 对信号流进行编码,则有新的 MIMO 方程
yn×1=Hn×mFm×rxr×1+nn×1\mathbf {y_{n\times 1} = H_{n\times m}F_{m \times r}x_{r\times 1}+n_{n\times 1}}
公式假设信道矩阵的秩是 rr,则可以同时发 rr 个数据流。编码后得到 mm 根天线的发射数据。为便于分析,将波束成形矩阵 W\mathbf WF\mathbf F 归一化,即 FHF=I\mathbf F^H \mathbf F = \mathbf I ,使用最大化接收信噪比的准则来获取波束成形矩阵。为了最大化接收信噪比,发送波束成形矩阵应满足
Ft=argmaxF[(HF)HHF]\mathbf F_t=\underset{\mathbf F}{\text{argmax}} \left[ (\mathbf{HF})^H \mathbf {HF}\right]
F\mathbf F 的理想选择是 SVD 中的 V\mathbf V 矩阵里面最大的前 rr 个奇异值对应的列组成的矩阵。同样,在接收端,接收波束成形矩阵 Wr\mathbf W_r 的列由 U\mathbf Urr 个最大的奇异值对应的列构成。

在实际中,信道矩阵不容易获取,SVD 也就无从谈起。因此,通信过程就说这样的:预先定义了多个预编码矩阵,称之为码本。例如两天线秩 1 的码本有 6 个,其中一个是:
[10]\begin{bmatrix}1\\ 0\end{bmatrix}

基站的天线都要发送单独的导频到手机,这样手机就可以进行信道估计,在得到信道矩阵之后判断它的秩,并选择一个码本发送给基站,这样基站使用手机反馈的码本进行编码来发射。

在天线阵列中,H=aT(θ)\mathbf {H=a}^T(\theta)。如果归一化因子为 M\sqrt{M},则预编码矩阵 F=1Ma(θ)\mathbf F=\frac{1}{\sqrt{M}}\mathbf a^*(\theta)
y=HFx+n=1MaT(θ)a(θ)x+n=Mx+n\mathbf {y = H F x+n}= \frac{1}{\sqrt{M}} \mathbf {a^T(\theta)a^*(\theta) x +n}=\sqrt{M}\mathbf {x+n}
功率增益 MM 叫做波束成形增益。对于一组固定的加权因子,即预编码矩阵 F\mathbf FHF=aT(θ)F(t)\mathbf {HF=a}^T(\theta) \mathbf F(t)θ\theta 的函数,称作方向图

展开阅读全文

没有更多推荐了,返回首页