Exact Low-Rank Matrix Completion from Sparsely Corrupted Entries Via Adaptive Outlier Pursuit

在测量中无法有效处理随机值的噪声,这篇文章提出一种鲁棒方法的异常值处理方法,用来处理测量值中部分值被异常值毁坏的情况。这种方法可以准确的识别异常值的位置,并且使用正确的值来替代异常值。

1 介绍 

2算法描述

假设秩r是已知的,大量的实验证明,当秩为已知情况下,(1.6)可以很好地处理矩阵补全问题。缺点是(U,W)并不是唯一的,在实际问题中,对于r*r矩阵A,((UA, A−1W))是另一种解决问题。许多学者已经对这个模型进行提升修改【2.9.10.18.19.23.26】

【3】结合上述问题提出RTRMC:


r是给定的秩,U是任一矩阵,他的行空间u属于格拉斯曼流形,在观测中Cij>0,λ是权重参数。使用黎曼信赖域方法来解决格拉斯曼流形的优化问题。数据实验显示,RTRMC比其他方法在大规模数据上有更好的效果,并且在长方矩阵十分有效并且会达到一个很小的相对误差。

然而在数据中存在稀疏随机值噪声是,测量结果不准确,为了克服这个问题,适应性的找到错误的位置并重建矩阵可以结合起来例如【29,30】,我们定义K为矩阵中的异常值数量,模型如下:


其中Λ ∈ Rm×n是一个二元矩阵,代表正确数据:


模型更新为:

为了解决非凸问题,我们使用最小二乘解决上述问题,可以将问题分成两步:

固定Λ更新U,W,需要最小化,可以通过RTRMC解决

固定U,W更新Λ,需要解决的问题是:

识别异常值的主要判别 为

如果第K和第K+1的值相同,那么我们选择任意Λ,例如并且

3 比较2.4和2.9

2.4


如果存在矩阵的一部分(L,S)满足,那么我们可以定义

如果Λi, j = 0,我们有Mij=Lij+Sij,如果Λi, j = 1,Mi, j − (Li, j + Si, j ) = Mi, j − Li, j,因此等式改为

从3.2中s和^d的关系,和约束条件,我们知道上述的约束条件可以通过2.4替代。另一方面我们知道任意矩阵L(m*n)并且秩小于r可以被写成两个矩阵UW,全部优化问题等同于其他问题的全部优化问题。当这两个问题是非凸的,其中一个问题的局部优化问题等同于另一个问题的局部优化,然而L的最小化问题仅呗S和…^yueshu .

4 K学习

5 数值分析

6 结论 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值