Equirectangular projection(等距柱状投影图)

本文探讨了等距圆柱投影的历史与应用,这是一种由马里努斯发明的简单地图投影,将经线映射为垂直直线,纬线映射为水平直线。文章详细介绍了投影的正向和逆向转换公式,并指出其在导航和地籍测绘中的局限性,以及在主题制图和全球栅格数据集中的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The equirectangular projection (also called the equidistant cylindrical projectiongeographic projection, or la carte parallélogrammatique projection, and which includes the special case of the plate carrée projection or geographic projection) is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100.[1] The projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

 

Contents

Definition

The forward projection transforms spherical coordinates into planar coordinates. The reverse projection transforms from the plane back onto the sphere. The formulae presume a spherical model and use these definitions:

\mathbf{\lambda } is the longitude of the location to project;

\mathbf{\varphi } is the latitude of the location to project;

\varphi _{1} are the standard parallels (north and south of the equator) where the scale of the projection is true;

\lambda _{0} is the central meridian of the map;

 \emph{\textbf{x}} is the horizontal coordinate of the projected location on the map;

\emph{\textbf{y}} is the vertical coordinate of the projected location on the map;

\mathbf{R} is the radius of the globe.

Forward

The plate carrée (French, for flat square), is the special case where \varphi _{1}  is zero. This projection maps x to be the value of the longitude and y to be the value of the latitude, and therefore is sometimes called the latitude/longitude or lat/lon(g) projection or is said (erroneously) to be “unprojected”.

While a projection with equally spaced parallels is possible for an ellipsoidal model, it would no longer be equidistant because the distance between parallels on an ellipsoid is not constant. More complex formulae can be used to create an equidistant map whose parallels reflect the true spacing.

Reverse

See also

References[edit]

  1. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 5–8, ISBN 0-226-76747-7.

External links[edit]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

David-Chow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值