Python-day1-变量与常量

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Lasso-Cox方法是一种结合了Lasso回归和Cox回归的方法,用于选择生存分析中的变量。它通过最小化L1正则化项来选择重要的变量,并使用Cox回归模型来估计变量的影响。以下是使用Python进行Lasso-Cox变量筛选的步骤: 1. 导入必要的库 ```python import numpy as np import pandas as pd from sklearn.linear_model import LassoCV from sklearn.preprocessing import StandardScaler from lifelines import CoxPHFitter ``` 2. 读取数据 ```python data = pd.read_csv('survival_data.csv') ``` 3. 数据预处理 ```python # 将时间和事件列提取出来 time = data['time'] event = data['event'] # 删除时间和事件列 data.drop(['time', 'event'], axis=1, inplace=True) # 标准化数据 scaler = StandardScaler() data_scaled = scaler.fit_transform(data) ``` 4. 使用LassoCV进行变量筛选 ```python # 使用LassoCV进行变量筛选 lasso = LassoCV(cv=5) lasso.fit(data_scaled, time) # 获取所选变量的索引 selected_vars = np.where(lasso.coef_ != 0)[0] # 获取所选变量的名称 selected_var_names = data.columns[selected_vars] ``` 5. 使用Cox回归模型进行建模 ```python # 使用所选变量进行建模 cox = CoxPHFitter() cox.fit(data.iloc[:, selected_vars], duration_col='time', event_col='event') ``` 6. 查看模型结果 ```python # 查看模型系数 print(cox.summary) # 查看模型预测结果 cox.predict_partial_hazard(data.iloc[:, selected_vars]) ``` 通过以上步骤,可以使用Lasso-Cox方法对生存分析数据进行变量筛选,并使用Cox回归模型进行建模和预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋风お亦冷

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值