zip说明
zip 自身的RDD的值的类型为T类型,另一个RDD的值的类型为U类型。zip操作将这两个值连接在一起。构成一个新的元组值
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {处理逻辑}
注意事项
需要两个rdd有相同的分区数 和 数据条数相同
Exception1: Can’t zip RDDs with unequal numbers of partitions: List(1, 8) = 分区数不同
Exception2: Can only zip RDDs with same number of elements in each partition = 数据条数不相同
需要注意的是,有相同的分区但并不能保证你会在每个分区相同的分布每个RDD,由于有不同类型RDDS和大多有不同的分区策略
代码示例
val matchesPath = "examples_data/kaggle_data/IPL_total_data/IPL Matches 2008-2020.csv"
val sc = sparkContextLocal
val matchesRDD = sc.textFile(matchesPath, 1)
.map(line => {
val split = line.split(",")
// 返回kaggle样例类
KaggleIPLMatches(
split(0),split(1),split(2),split(3),split(4),split(5),
split(6),split(7),split(8),split(9),split(10),split(11),
split(12),split(13),split(14),split(15),split(16)
)
})
val limitRdd = matchesRDD.take(100)
val valueRdd = sparkContextLocal.makeRDD(limitRdd).repartition(1)
val ss = sc.parallelize(1 to 100).repartition(valueRdd.getNumPartitions) // 指定分区数
/**
* zip操作将这两个值连接在一起
* zip 条件
* 需要两个rdd有相同的分区数 和 数据数量相同
* Exception1: Can't zip RDDs with unequal numbers of partitions: List(1, 8) = 分区数不同
* Exception2: Can only zip RDDs with same number of elements in each partition = 数据条数不相同
* 需要注意的是,有相同的分区但并不能保证你会在每个分区相同的分布每个RDD,由于有不同类型RDDS和大多有不同的分区策略
*/
// Exception2: Can only zip RDDs with same number of elements in each partition
// 两个 RDD 具有相同数量的分区,这些 RDD 中的各个分区具有完全相同的大小
val zipRDD = ss.zip(valueRdd)
zipRDD.foreach(println)
858

被折叠的 条评论
为什么被折叠?



