问题
在毕设使用tensorflow在服务器上跑实验的时候遇到几个问题:
- tensorflow默认占用所有GPU资源,因此启动就把所有GPU显存给占满。
解决办法:使用启用最少的GPU显存来运行程序或者限定显存比例
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
config = tf.ConfigProto()
# 占用GPU40%的显存,指定比例
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config)
另外一个问题是虽然指定了某个GPU运算,但还是会占用另外一个GPU的显存:
+ 因为在tensorflow代码中with tf.device(‘/gpu:0’):只会指定在GPU 0上计算,但仍然会默认占用所有GPU资源。
解决办法:添加如下代码:
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" //使用GPU0,这样就不会占用GPU1的显存
最终效果:


1596

被折叠的 条评论
为什么被折叠?



