一、数据调研:业务调研、需求分析
在建设大数据数据仓库时,要进行充分的业务调研和需求分析。
这是数据仓库建设的基石,业务调研和需求分析做得是否充分直接决定了数据仓库建设是否成功。
二、进行数据总体架构设计
根据数据域对数据进行划分;
按照维度建模理论,构建总线矩阵、抽象出业务过程和维度;
注意:对应维度建模理论的前三项:选择业务过程、声明粒度、确定维度
三、对报表需求进行抽象整理出相关指标体系,完成指标规范定义和模型设计(模型设计也叫做分层设计)
注意:对应维度建模理论的第四项:确定事实(也可以叫做确定度量值或确定指标)
四、代码研发和运维
维度建模:选择业务过程、声明粒度、确定维度、确定事实

参考文章
摘自 《大数据之路·阿里巴巴大数据实践》
本文详细阐述了大数据仓库建设的四个核心步骤:业务调研与需求分析、数据总体架构设计、报表需求抽象与指标体系建立、代码研发和运维。强调了每个步骤在数据仓库建设中的重要性,特别是业务理解与需求定义对于项目成功的关键作用。同时,提到了维度建模理论在设计过程中的应用。
2020

被折叠的 条评论
为什么被折叠?



