👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 1.1.1 语言模型演进:从N-gram到Transformer 引言 1. 统计语言模型时代 1.1 `N-gram`模型基本原理 1.2 核心缺陷与挑战 2. 神经语言模型革命 2.1 里程碑模型演进 2.2 关键技术突破 3. Transformer架构的划时代意义 3.1 架构创新解析 3.2 性能飞跃对比 4. GPT系列模型参数演进 4.1 代际技术参数对比 4.2 规模效应实证 5. 技术突破与挑战 5.1 关键技术创新矩阵 5.2 当前技术瓶颈 6. 未来发展方向 6.1 技术演进趋势预测 6.2 突破性技术候选 1.1.1 语言模型演进:从N-gram到Transformer 引言 语言模型(Language Model)作为自然语言处理(NLP)领域的核心基础,其发展历程深刻影响着人工智能技术的演进。本章将系统解析语言模型从统计学习到深度学习的关键跃迁,并聚焦GPT系列模型的技术突破。 1. 统计语言模型时代 1.1 N-gram模型基本原理 概率公式: 典型配置对比: 模型类型 上下文窗口 参数量级 典型应用场景