Hessian Metrix

本文介绍了Hessian矩阵的概念,它用于描述多元函数的二阶偏导数。当函数的二阶导数连续时,Hessian矩阵对称,并在映射f:R2→R的应用中,其行列式可用于判断临界点的性质。通过实例分析了Hessian矩阵行列式等于0、大于0和小于0时,临界点可能是极值点、鞍点的情况。
摘要由CSDN通过智能技术生成

Hessian Metrix

定义:在数学中,海森矩阵(Hessian matrix 或 Hessian)是一个多变量实值函数的二阶偏导数组成的方块矩阵,假设有一实数函数 f ( x 1 , x 2 , ⋯   , x n ) f(x_{1}, x_{2}, \cdots, x_{n}) f(x1,x2,,xn),如果 f f f所有的二阶偏导数都存在,那么 f f f的Hessian矩阵的第 i j ij ij-项即:
H ( f ) i j ( x ) = D i D j f ( x ) H(f)_{ij}(x)=D_i D_j f(\mathbf{x}) H(f)ij(x)=DiDjf(x)
其中 x = ( x 1 , x 2 , ⋯   , x n ) \mathbf{x}=(x_1, x_2, \cdots, x_n) x=(x1,x2,,xn),即
H ( f ) = [ ∂ 2 f ∂ x 1 ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 ∂ x 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n ∂ x n ] H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix} H(f)=x1x12fx2x12fxnx12fx1x22fx2x22fxnx22fx1xn2fx2xn2fxnxn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值