leung5
码龄10年
关注
提问 私信
  • 博客:106,528
    106,528
    总访问量
  • 27
    原创
  • 1,051,271
    排名
  • 21
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-12-16
博客简介:

leung的博客

查看详细资料
个人成就
  • 获得94次点赞
  • 内容获得27次评论
  • 获得357次收藏
  • 代码片获得329次分享
创作历程
  • 3篇
    2022年
  • 2篇
    2021年
  • 1篇
    2020年
  • 11篇
    2019年
  • 14篇
    2018年
成就勋章
TA的专栏
  • 个人笔记
    4篇
  • 个人总结
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Ymir初级使用教程

Ymir初级使用教程
原创
发布博客 2022.12.09 ·
2236 阅读 ·
2 点赞 ·
3 评论 ·
5 收藏

VGG-F/CNN-F pytorch 导入 imagenet-vgg-f.mat

import torchfrom torch import nnCNN_F = "imagenet-vgg-f.mat"layers = ('conv1', 'relu1', 'norm1', 'pool1','conv2', 'relu2', 'norm2', 'pool2','conv3', 'relu3', 'conv4', 'relu4','conv5', 'relu5', 'pool5','fc6', 'relu6', 'fc7', 'relu7')cnnf = sio.l.
原创
发布博客 2022.04.28 ·
527 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

人脸数据集汇总 MS1M-IBUG MS1M-ArcFace MS1M-RetinaFace 等

人脸数据集不太好直接找到,实际在 github上的insightface里有汇总。说明:MS1M-IBUG : MS1M V1MS1M-ArcFace : MS1M V2MS1M-RetinaFace : MS1M V3以下信息来自于网站 :https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_Face Recognition DatasetsTraining Data..
原创
发布博客 2022.01.09 ·
5540 阅读 ·
3 点赞 ·
2 评论 ·
23 收藏

ERROR: Failed building wheel for opencv-python-headless

ERROR: Could not build wheels for opencv-python-headless which use PEP 517 and cannot be installed directly解决:更新pippip install --upgrade pip
原创
发布博客 2021.12.24 ·
4998 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

undefined symbol _ZTINSt8ios_base7failureB5cxx11E

导入模块出现undefined symbol _ZTINSt8ios_base7failureB5cxx11E, version GLIBCXX_3.4.21 not defined in file libstdc++.so.6 with link time reference或者 undefined symbol _ZTINSt8ios_base7failureB5cxx11E背景原因解决方法1:解决方法2:或者 undefined symbol _ZTINSt8ios_base7failureB5c
原创
发布博客 2021.04.08 ·
578 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏

MAML学习资料推荐 Model-AgnosticMeta-Learning for Fast Adaptation of DeepNetworks

最近接触 Meta-Learning,肯定得看看2017年发表在ICML的 MAML:《Model-Agnostic Meta-Learning for Fast Adaptation of DeepNetworks 》了,结合自己的学习过程分享一下比较好的学习资料:对MAML算法及整体框架的理解:知乎回答:https://zhuanlan.zhihu.com/p/57864886对于Algorithm 1 中具体梯度的计算:李宏毅的视频:https://www.bilibi..
原创
发布博客 2020.09.25 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

已知后序和中序求先序 python

根据后序和中序求先序:按照常规思路递归实现,先递归生成左子树,再递归生成右子树class node: #定义节点结构 def __init__(self, value = None, left = None, right=None): self.value = value self.left = l...
原创
发布博客 2019.09.18 ·
1990 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

卷积、池化、激励函数的顺序

以下内容为个人的看法:顺序:卷积---池化---激励函数我们知道卷积肯定是在第一层,毕竟 σ(wx+b),wx+b 就是卷积操作,那为什么池化要在卷积之前呢?原因解析:假设激励函数是 relu 激励函数:假设我们卷积后的值为:3,-2,1,2 ;对于 avg_poolling :先 relu 再池化:当经过 relu 函数之后,得到的值为:relu(3) = 3,re...
原创
发布博客 2019.05.26 ·
5059 阅读 ·
7 点赞 ·
1 评论 ·
14 收藏

多分类问题下的评估指标

一般二分类中直接用 查准率(precision)、查全率(recall)、F1 score 、AUC就可以做评价指标在多分类中:1、西瓜书中介绍了 宏查准率(macro-P)、宏查全率(macro-R)、宏F1(macro-F1) 、以及 微查准率(micro-P)、微查全率(micro-R)、微F1(micro-F1)。可自行查阅在tensorflow中,可以使用以下任意函数(两者等...
原创
发布博客 2019.05.16 ·
2793 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

ubuntu搭建ftp服务器-按部就班就好 (躺坑后亲测成功)

安装完成之后通过用户密码登录ftp服务器,登入目录为用户的家目录。其均可从家目录中切换进入家目录下属子目录本教程设置了一个专门用于ftp的用户 -- ftpuser,其家目录在/home/ftp,其下有两个文件夹:Down、Up。Down仅可下载,Up可下载、上传、删除。同时每隔一天将Up中文件移动到 Down 文件夹其它本地用户可以登录到自己的家目录1、安装vsftp...
原创
发布博客 2019.04.19 ·
29959 阅读 ·
41 点赞 ·
14 评论 ·
232 收藏

slim.arg_scope嵌套理解(超简单)

def new_arg_sc():with slim.arg_scope([slim.conv2d, slim.fully_connected], trainable=True,activation_fn=tf.nn.relu, ...
原创
发布博客 2019.04.17 ·
1484 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

ubuntu16.04 双硬盘,riad0,RTX2080TI双显卡装cuda cudnn tensorflow-gpu可行的各版本记录

之前就有装cuda cudnn anaconda的经验,本来以为配环境几个小时就能搞定,结果前前后后装了有一天。https://tensorflow.google.cn/install/source#linux -----这个网站是tensorflow官方测试通过的tensorflow cuda cudnn python版本对应关系感觉以后还会配环境,现记录:装系统时:先装riad0 ...
原创
发布博客 2019.04.06 ·
936 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

使用Xshell在windows 和 ubuntu 服务器之间互传文件

Xshell 连上服务器后步骤1:ubuntu上安装:sudo apt-get install lrzsz步骤2:Windows向ubuntu传输文件:命令行输入:rzubuntu向Windows传输文件:命令行输入:sz + 文件名注:Xshell 会话属性/ZMODEM 要是 ✔ 激活的。不过默认是激活的,一般不用动那个...
原创
发布博客 2019.03.19 ·
1058 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

机器学习中一些好的博客汇总

PCA的数学原理 :https://www.cnblogs.com/mikewolf2002/p/3429711.html交叉熵的理解 : https://blog.csdn.net/tsyccnh/article/details/79163834GAN论文解读 : https://blog.csdn.net/stalbo/article/details/79283399 牛人博客...
原创
发布博客 2019.02.25 ·
325 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

liunx su与sudo PATH

supassword能够切换到 root 用户下,但是此时你用的 PATH 还是原用户的 PATH,如果想切换到 root 的 PATH,需要 ‘su’ + ‘-’,即su -password此时,你的 PATH 也切换到了 root 用户的 PATH。总的来说:若要完整的切换到新用户的环境,需要使用 su - username 才会连同PATH、USER、MAI...
原创
发布博客 2019.01.12 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C中的回调函数

将一个函数 A() 以指针形式作为另外一个函数B(&A)的参数,可以在不改变原始程序的情况下,修改A()的实现方式。如:A为一个排序算法 sort(),用快速排序实现。我们在 B 函数中调用了sort()。当我们不想使用快排了,我们需要选择堆排序。那么我们只需要改 sort()的实现方式就行了,不需要改 B 中的代码。...
原创
发布博客 2019.01.09 ·
299 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

同步,异步,阻塞,非阻塞

同步:A 向 B 发一条消息,A必须等到B的回应之后才结束等待状态;异步:A 向 B 发一条消息,A可以在发出请求之后,去干别的事,当 B 完成信息准备后,发出一个通知信号告诉 A。回调函数(callback())可认为就是一种通知信号。阻塞:CPU要使用系统总线,但是系统总线被占用,CPU就被阻塞,它不干其他事,等待总线空闲。非阻塞:CPU要使用系统总线,但是系统总线被占用,CPU先...
原创
发布博客 2019.01.09 ·
155 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Network IN Network的理解

 上面二图就是Network IN Network具体我们可以来看第二张图的一个MLPconverlution,一个MLPconverlution块其实可以分为两步:一个正常的卷积,与一个1*1的卷积(或者说“选择性”的全连接网络)第一个MLPconverlution是一个224*224*3的input,正常情况下,被96个11*11*3的卷积核(假设步长为N)卷积完之后是一个...
原创
发布博客 2018.12.29 ·
500 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

空间域、频域、高通滤波、低通滤波

最近由于深度学习做图像,要看图像处理的知识,看了几篇博客,图和大部分文字来自与那些博客,把知识点总结了一下:①通过观察灰度分布来描述一幅图像称为空间域,观察图像变化的频率被称为频域。②频域滤波是在频率域对图像做处理的一种方法。步骤如下:滤波器大小和频谱大小相同,相乘即可得到新的频谱。低频对应区域的图像强度变化缓慢,高频对应的变化快。低通滤波器去除了图像的...
原创
发布博客 2018.12.19 ·
6554 阅读 ·
1 点赞 ·
0 评论 ·
19 收藏

排序小feature(计数排序和基数排序)

基数排序为什么从低位开始排:[例如] 一个无序数列{655 392 694 436 29 826 171 180}; 先从最高位排序:{826 694 655 436 392 171 180 29}; 再对次高位排序:只能对高位是6的{694 655}单独排序,对高位是1的{171 180}单独排序。且:基数排序从低位开始排的时候要注意内部稳定性,这样才能保证算法的稳定性 ...
原创
发布博客 2018.09.27 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多