hdu 5424 dfs

本文介绍了一种从图中最小度节点出发寻找路径的方法,包括广度优先搜索(BFS)和深度优先搜索(DFS),适用于理解如何在图论中解决连通性和路径查找问题。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
int ma[1005][1005];
int vis[1005];
int n;
int d[1005];
#define INF 1000000
int bfs(int u){
    memset(vis,0,sizeof(vis));
    queue<int> que;
    que.push(u);
    vis[u] = 1;
    while(!que.empty()){
        int u = que.front();
        que.pop();
        for(int i = 1;i <= n;i++){
            if(!vis[i] && ma[u][i] == 1){
                que.push(i);
                vis[i] = 1;
            }
        }
    }
    for(int i = 1;i <= n;i++){
        if(!vis[i]){
             return 0;
        }
    }
    return 1;
}
int dfs(int u,int st){
    vis[u] = 1;
    if(st == n) return 1;
    for(int i = 1;i <= n;i++){
        if(!vis[i] && ma[u][i] == 1){
            if(dfs(i,st+1)){
                return 1;
            }
            else{
                vis[i] = 0;
            }
        }
    }
    return 0;
}
int main(){
    while(cin >> n){
        memset(ma,0,sizeof(ma));
        memset(d,0,sizeof(d));
        for(int i =  0;i < n;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            if(x != y){
                if(!ma[x][y]){
                    ma[x][y] = 1;
                    ma[y][x] = 1;
                    d[x]++;
                    d[y]++;
                }

            }
        }
        if(!bfs(1)){
            printf("NO\n");
        }
        else{
            memset(vis,0,sizeof(vis));
            int ma = INF;
            int k = 0;
            for(int i  =1;i <= n;i++){
                if(d[i] < ma){
                    ma = d[i];
                    k = i;
                }
            }
            if(dfs(k,1)){
                printf("YES\n");
            }
            else{
                printf("NO\n");
            }
        }
    }
    return 0;
}

要从最小度开始,那里才是起点和终点

内容概要:本文详细介绍了一个基于Java+Vue的深度学习遥感建筑物提取与变化检测系统的设计与实现。系统融合多源遥感数据预处理、U-Net建筑物分割、孪生神经网络变化检测等核心技术,构建从前端交互、后端任务调度到模型推理的完整闭环。项目涵盖需求分析、数据库设计(MySQL)、API接口规范、前后端功能模块实现(含代码示例)、系统部署与未来优化方向,实现了遥感影像上传、自动分割、多时相变化检测、结果可视化与报告导出等全流程功能。系统具备高自动化、强交互性、可扩展性和安全合规等特点,适用于城市规划、灾害监测、土地调查等多个领域。; 适合人群:具备Java、Vue前端及深度学习基础知识的研发人员、GIS开发工程师、遥感数据分析师,以及从事智慧城市、自然资源管理等相关领域的技术人员。; 使用场景及目标:①应用于城市精细化管理、灾害应急响应、房地产监控等场景,实现建筑物动态变化的智能识别与可视化分析;②作为深度学习与遥感技术融合的教学案例,帮助开发者掌握前后端分离架构、模型集成、大规模数据处理与系统部署的综合技能;③为企业或科研机构提供可二次开发的开源框架,支持定制化模型接入与业务扩展。; 阅读建议:建议结合文档中的代码示例与系统架构图进行实践,重点关注前后端交互逻辑、深度学习模型调用方式及数据库设计。在学习过程中可搭建本地开发环境,逐步实现各功能模块,并通过模拟数据验证系统流程。同时注意安全规范与性能优化策略,以提升系统的稳定性与实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值