tiki_taka_
码龄10年
关注
提问 私信
  • 博客:102,707
    问答:2,896
    105,603
    总访问量
  • 43
    原创
  • 1,386,867
    排名
  • 27
    粉丝
  • 0
    铁粉

个人简介:我要在这个世界 留一点我的足迹,证明我的存在。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2014-12-22
博客简介:

人上人酿酒师的博客

查看详细资料
个人成就
  • 获得48次点赞
  • 内容获得61次评论
  • 获得343次收藏
  • 代码片获得350次分享
创作历程
  • 8篇
    2023年
  • 5篇
    2022年
  • 9篇
    2021年
  • 1篇
    2020年
  • 4篇
    2019年
  • 4篇
    2018年
  • 1篇
    2017年
  • 8篇
    2016年
  • 5篇
    2015年
成就勋章
TA的专栏
  • NLP
    14篇
  • 算法
    2篇
  • hive
    1篇
  • 数据库
    1篇
  • azkaban
    1篇
  • ACM
    2篇
  • 算法分析
    1篇
  • Java和C++入门
    2篇
  • spark
    2篇
  • 编译原理
    3篇
  • DesignPattern(JAVA设计模式)
    4篇
  • J2SE
    1篇
  • Machine Learning In Action
    1篇
  • 机器学习
    12篇
兴趣领域 设置
  • 人工智能
    自然语言处理nlp
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Prompt Tuning训练过程

对于不同的任务,仅需要插入不同的prompt 参数,每个任务都单独训练Prompt 参数,不训练预训练语言模型,这样子可以大大 缩短训练时间,也极大的提升了模型的使用率。例如,下图的BERT/BART/ERNIE 均为预训练语言模型,对于人类提出的问题,以及线索,预训练语言模型可以给出正确的答案。前面两个阶段都依赖于有监督学习,但是这个阶段里的预训练可以不需要有监督的数据,极大的降低了对监督语料的依赖。更注重于目标的设计,合理设计预训练跟微调阶段的目标函数,对最终的效果影响深远。
原创
发布博客 2023.09.04 ·
1482 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Rasa 多轮对话机器人

Rasa NLU:提取用户想要做什么和关键的上下文信息Rasa Core:基于对话历史,选择最优的回复和动作通道(channel)和动作(action):连线对话机器人与用户及后端服务系统。tracker store、lock store和event broker等辅助系统组件之间的顺序关系至关重要。例如,NER组件需要前面的组件提供分词结果才能正常工作,因此前面的组件中必须有一个分词器。组件是可以相互替换的。例如,清华大学开发的分词器和北京大学开发的分词器均能提供分词结果。
原创
发布博客 2023.09.04 ·
2635 阅读 ·
3 点赞 ·
0 评论 ·
23 收藏

大语言模型(LLM)发展历程

大语言模型发展历程,分为 Encode-only、Encode-Decode、Decoder-only
原创
发布博客 2023.07.05 ·
398 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

chatglm+langchain

Langchain + chatglm 本地QA 过程
原创
发布博客 2023.07.03 ·
3088 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

ChatGLM6B LORA微调

chatglm + LORA 微调
原创
发布博客 2023.07.03 ·
1754 阅读 ·
0 点赞 ·
1 评论 ·
9 收藏

大语言模型model官方文件整理【roberta_wwm,bert_wwm,bert,xlnet....】

bert/roberta/xlnet/macbert/electra等等tiny、base、small、large、xlarge等等版本,tensorflow和torch版本
原创
发布博客 2023.06.27 ·
2486 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

TensorFlow2.2 安装包依赖

tf2.2 依赖第三方包版本匹配,Keras、transformers、bert4keras、rasa
原创
发布博客 2023.06.05 ·
1194 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

语言模型主流

主流的语言模型学习资料
原创
发布博客 2023.06.05 ·
613 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PSI模型稳定计算代码

PSI2022/02/08 17:33参考资料:PSI解释:https://zhuanlan.zhihu.com/p/79682292[https://mwburke.github.io/data%20science/2018/04/29/population-stability-index.html](https://mwburke.github.io/data science/2018/04/29/population-stability-index.html)代码https://git
原创
发布博客 2022.02.08 ·
1128 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

category类型和数值类型 输入 神经网络

category类型和数值类型 输入 神经网络
原创
发布博客 2022.01.04 ·
832 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

分类 对应的 全连结层、activation、loss 的选择

全连接层 二分类 激活函数 和 loss 的选择
原创
发布博客 2022.01.04 ·
1187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AUC TP FP TN FN recall fpr 混淆矩阵

AUC TPR FPR ROC 评价指标
原创
发布博客 2022.01.04 ·
1013 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

XGBoost & RandomForest特征选择

XGBoost Random Forest 特征选择
原创
发布博客 2022.01.04 ·
1266 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

特征工程 之 特征选择

特征选择特征选择的目的减少特征数量、降维,使模型泛化能力更强,减少过拟增强对特征之间的理解去掉变化小的特征统计样本个数这应该是最简单的特征选择方法了:假设某特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以
原创
发布博客 2021.09.13 ·
227 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

特征工程 之 embedding层

TensorFlow中文官方网站离散和连续特征怎么喂入模型:https://tensorflow.google.cn/tutorials/structured_data/preprocessing_layersKeras 和 TensorFlow 版本 匹配信息:https://docs.floydhub.com/guides/environments/Keras Embedding 和W2V例子:https://zhuanlan.zhihu.com/p/279395289Keras 自定义Embed
原创
发布博客 2021.09.13 ·
562 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

特征工程之 模型 对 离散和连续的处理

无论模型是传统的ML,还是DL模型,处理的都是连续性变量(特征),在现实开发中,特征往往存在着两种状态–离散和连续。机器学习模型处理的都是连续型数据(loss,梯度更新权重,不连续则没有办法去更新权重),对于离散型遍历有以下几种处理方式:将类别无序 ——> 连续 (one-hot)将类别有序 ——> 连续 (Label Encoder),一般将类别数值型 利用 Label Encoder 进行编码,转化成连续型特征。 即是对不连续的数字或者文本进行编号类别型变量范围在范围较小时 推荐
原创
发布博客 2021.09.13 ·
1089 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

hive SQL group by rollup && cube && grouping sets

参考链接:SQL:group by :https://blog.csdn.net/make_1998/article/details/82938038https://blog.csdn.net/weixin_44112790/article/details/117129217https://www.cnblogs.com/chenzechao/p/11273980.html【hive 】cube 和 roll up https://www.cnblogs.com/zzhangyuhang/p/9
原创
发布博客 2021.09.13 ·
504 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

不平衡分类

文章目录所依赖的包1. 标准化2. 定义模型和指标3. 基线模型4. 设置正确的初始偏差---初始化偏差5. 初始化 权重6. 训练模型7. 类别 权重8. 用class_weight 训练模型9. 评估指标10. 过采样11. 总结:11.1. 加入 初始化偏差,有助于 加快收敛速度。在输出层增加11.2. 加入初始化权重,有可比性11.3. 引入class_weight,11.4. 评估指标11.5. 混淆矩阵11.6. roc:12. 代码总结13. 参考:所依赖的包import tensorfl
原创
发布博客 2021.09.13 ·
543 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LSTM 输入和输出格式Keras

假如数据集是(5000,28,128),其中5000指的是样本个数,(28,128)便是具体每个样本的行列数,28就是lstm中的时间步数;假如定义一个lstm层为 LSTM(output_dim= 256,activation=,input_shape= (28,128)),那么每个时间步输出的是一个元素个数为256的一阶向量,所有时间步集合起来就是(28,256)的二阶向量。至于模型是用所有时间步的输出,还是只用最后一个,就看具体怎么设计了。对应:(N,T,F)=&g...
原创
发布博客 2021.05.17 ·
3863 阅读 ·
4 点赞 ·
1 评论 ·
30 收藏

redis

Redis学习文章目录Redis学习1. install redis修改 redis.conf创建本地与docker映射目录,即本地存放位置可以自定义,因为我的docker的一些配置文件都是存放在/data目录下面的,所以我依然在/data目录下创建一个redis目录,这样是为了方便后期管理2. Redis优势3. Redis数据类型4. Redis 命令5. Key 命令6. String 命令7. Hash命令 特别适合用于存储对象8. List命令9. Set 集合10. HyperLogLog
原创
发布博客 2021.04.15 ·
112 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多