妖白的奇幻漂流世界

世界这么大,我要学python

从一元高斯分布到多元高斯分布(含例子,python代码)

为了简化下面的高斯分布都是按照零均值写的一元高斯的标准形式: 多元高斯的标准形式: 下面推导为什么一般的多元高斯具有形式: 核心观点:所有的非奇异的多元高斯分布都是以多元标准高斯分布为基础,通过非奇异矩阵 进行坐标变换而来的假设对于一般的多元高斯分布 有 那么因此 这样应该就可以理解公式里面为...

2018-04-26 16:24:38

阅读数:120

评论数:0

什么是梯度下降法以及梯度下降法相关知识

https://blog.csdn.net/walilk/article/details/50978864引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归、逻辑回归、Softmax回归、神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍...

2018-04-23 15:52:31

阅读数:36

评论数:0

矩阵的 正定与半正定

先不慌,我们要搞清楚正定与半正定先熟悉几个基本的概念一:矩阵的基最简单的理解就是:线性变换就是线性映射,矩阵只不过是线性映射的系数而已。所以,选定基底实际是选定坐标轴(不一定正交)。我们平时不太关心坐标轴,是因为所有地方都用同一个坐标系x-y-z。很多时候,合适的坐标系会简化问题。这就像描述一个物...

2018-04-20 10:25:17

阅读数:410

评论数:0

机器学习中数据训练集,测试集划分与交叉验证的联系与区别(含程序)

因为一个模型仅仅重复了刚刚训练过的样本的标签,这种情况下得分会很高,但是遇到没有训练过的样本就无法预测了。这种情况叫做过拟合。为了避免过拟合,一个常见的做法就是在进行一个(有监督的)机器学习实验时,保留一部分样本作为测试集(X_test, y_test)。为了提高训练数据的泛化能力,我们把训练集和...

2018-04-17 10:29:09

阅读数:175

评论数:0

关于向量的期望值、均值向量和协方差矩阵

转载:https://blog.csdn.net/dbj2009/article/details/48949871 向量随机变量X的数学期望也是一个向量,其各分量是原X的各个分量的数学期望。如果f(x)是d维随机变量X的n维向量函数                                 ...

2018-04-11 17:36:22

阅读数:152

评论数:0

似然函数,最大似然估计 简单理解

 似然函数、最大似然估计简单理解   摘抄自维基百科: https://zh.wikipedia.org/wiki/%E4%BC%BC%E7%84%B6%E5%87%BD%E6%95%B0 https://zh.wikipedia.org/wiki/%E6%9C%80%E5%...

2018-04-11 08:36:42

阅读数:53

评论数:0

关于深度学习图像处理项目及其代码

转载:https://blog.csdn.net/c2a2o2/article/details/77701181收集了大量深度学习项目图像处理领域的代码链接。包括图像识别,图像生成,看图说话等等方向的代码,所有代码均按照所属技术领域建立索引,以便大家查阅使用。2.1 图像生成 2.1.1 绘画风格...

2018-04-09 14:46:43

阅读数:316

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭