pytorch三:Tensor基础操作

31 篇文章 454 订阅 ¥9.90 ¥99.00
本文详细介绍了PyTorch中的Tensor操作,包括创建、与list和array互转、查看形状、view、squeeze和unsqueeze、索引、gather、clamp、归并操作、比较操作、线性代数、广播机制以及内部结构和向量化计算。通过实例展示了Tensor的高效计算和内存管理,强调避免使用低效的for循环,提倡向量化计算。
摘要由CSDN通过智能技术生成

Tensor的创建

#指定Tensor的形状
import torch as t
a = t.Tensor(2,3)#系统不会马上分配空间,使用到tensor时才会分配,数值取决于内存空间的状态
a
>>tensor([[-1.9334e+22,  2.8671e-42,  0.0000e+00],
         [ 0.0000e+00,  0.0000e+00,  0.0000e+00]])

#用list创建Tensor
b = t.Tensor([[1,2,3],[4,5,6]])
b
>>tensor([[1., 2., 3.],
         [4., 5., 6.]]))

#创建一个和b形状一样的Tensor
c = t.Tensor(b.size())
c
>>tensor([[8.5199e-43, 0.0000e+00, 1.4013e-45],
         [0.0000e+00, 0.0000e+00, 0.0000e+00]]

#创建一个元素为2和3的Tensor
d = t.Tensor((2,3))
d
>>tensor([2., 3.])

t.ones(2,3)
>>tensor([[1., 1., 1.],
        [1., 1., 1.]])

t.zeros(2,3)
>>tensor([[0., 0., 0.],
        [0., 0., 0.]])

t.eye(2,3)#对角线为1&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值