Gensim用LDA模型计算文档相似度

该博客介绍了如何利用Gensim库中的LDA模型来计算文档之间的相似度,提到了Cosine相似度和Hellinger距离作为潜在的相似性度量方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用LDA模型计算文档相似度

Don’t know if this’ll help but, I managed to attain successful results on document matching and similarities when using the actual document as a query.

dictionary = corpora.Dictionary.load('dictionary.dict')
corpus = corpora.MmCorpus("corpus.mm")
lda = models.LdaModel.load("model.lda") #result from running online lda (training)

index = similarities.MatrixSimilarity(lda[corpus])
index.save("simIndex.index")

docname = "docs/the_doc.txt"
doc = open(docname, 'r').
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值