用最通俗的方式,从头到尾给你讲一遍 CNN。

1. 为什么要用 CNN?普通神经网络有什么问题?

想象你是一个小学生,老师给你一张图片,让你判断上面是不是一只猫。
你可能会这样做:

  • 看到耳朵,可能觉得像猫。
  • 看到胡须,可能更像猫。
  • 看到四条腿,再加点自信,应该是猫了!

但如果老师给你一张完全打乱的猫的像素点(就像普通神经网络展开成一维向量的方式),你还能认出来吗?
—— 当然不行! 因为你失去了「位置」的信息,猫的耳朵、鼻子、胡须都变成了无序的数据,你根本不知道谁在哪。

普通神经网络(MLP)的最大问题:

  1. 它不考虑像素之间的空间关系,而图像恰恰最重要的就是位置关系!
  2. 计算量爆炸,一张 100x100 的图片有 10,000 个像素,连接到 1,000 个神经元就有 1,000 万个参数,训练太慢!

所以,我们需要 CNN,它能保留空间结构,同时减少计算量


2. CNN 的核心思想——局部感知和权重共享

CNN 解决问题的方式就像人类识别事物的方式:

  • 我们不会一眼看所有像素,而是先看局部,再组合整体
  • 看到「三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忍者算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值