本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)
本文简介:入门版:基于大模型能力,如何提炼出优质prompt
- 提示词的重要性和价值
- 大模型基础能力简介
- prompt的基本定义
- 如何定义优质的prompt
- prompt的万能公式与套路
- prompt的常用优化技巧(偏理论)
目录
在当今信息爆炸的AIGC时代,自然语言处理技术的快速发展为人们带来了前所未有的机遇和挑战。作为其中的重要组成部分,大规模语言模型在多个领域展现了强大的能力。然而,随着模型规模的增长和复杂性的提升,如何引导模型生成准确、有价值的输出,已成为一个关键问题。
一、引言
在解决这一问题的过程中,Prompt(提示语)的重要性日益凸显。Prompt是一种简短的文本片段,用于引导大模型生成特定类型的输出。它们可以是问题、指令、示例等形式,为模型提供了上下文和方向。通过巧妙设计的Prompt,我们能够引导模型生成更加准确、有针对性的回答和创造性的输出。
如今,好的Prompt已经成为市场上的宝贵资源,具有实际的商业价值。企业和个人在各个领域中都在寻求优质Prompt的开发,以提升他们的产品、服务和用户体验。一个精心设计的Prompt可以将模型的潜力最大化,并实现更高效的信息检索、个性化的推荐系统、智能客服等应用。
二、 大模型能力简介
大规模预训练模型(Large Language Models,LLMs)以其强大的语言理解和生成能力,在自然语言处理领域引起了广泛的关注。
它们通过在大规模语料库上进行训练,学习到了丰富的语言知识和语义关联。这使得它们具备了三大重要能力:上下文学习、指令遵循和思维链推理。
- 上下文学习:LLMs通过学习大量的文本数据,能够理解和利用上下文信息。这意味着模型可以根据前面的内容来解释后面的内容,从而更好地理解和生成连贯的语言。例如,在对话系统中,LLMs可以根据之前的对话历史来产生更准确的回复,考虑到上下文中的语境和用户意图。
- 指令遵循:LLMs可以遵循人类提供的指令,执行特定的任务或生成特定类型的输出。通过将明确的指令作为Prompt提供给模型,它可以生成与指令相符合的结果。例如,在问答系统中,通过明确指定问题的类型和所需的回答格式,LLMs可以生成符合要求的准确答案。
- 思维链推理:LLMs具备一定的逻辑推理能力,能够通过链接多个概念和信息来推断出新的结论。通过触发模型内部的记忆和语义联系,LLMs可以进行推理、概括和综合信息,从而生成更加有条理和富有创造性的输出。这使得它们在生成故事、文章和创意内容方面表现出色。
这三大能力使得LLMs成为了在自然语言处理任务中具有巨大潜力的工具。它们可以根据上下文进行语义理解,按照指令生成特定类型的输出,并通过推理链连接信息来生成新的见解。这不仅为人们提供了强大的语言处理工具,还为各行各业的应用提供了更广阔的可能性。随着对LLMs的深入研究和不断的优化,我们可以期待它们在语言任务中发挥越来越重要的作用。
因此,在大规模预训练模型下,能够有高质量的Prompt就能生成很好的内容,帮助自己提升生产效率。
三、Prompt基本定义
Prompt简单说就是驱动大模型进行表达文本描述。
更详细地说,Prompt的基本定义包括以下几个要素:
- 文本片段:Prompt可以是一个短语、一句话、一个段落,甚至是一个完整的问题。它通常是由人类设计者创建的,用于明确和传达特定的意图或任务要求。
- 引导模型行为:Prompt的目的是引导模型执行特定的操作或生成特定类型的输出。这可以包括回答问题、完成任务、写作文章、生成代码等。Prompt需要明确指导模型的期望行为,确保生成的结果符合预期。
- 上下文和约束:Prompt可以包含上下文信息,以便模型理解和生成与之相关的内容。上下文可以是先前的对话历史、背景知识或特定领域的约束。通过提供相关的上下文,Prompt帮助模型更好地理解输入和生成输出。
- 设计和优化:Prompt的设计是一门艺术。良好设计的Prompt应当明确、简洁、一致,并且能够有效地引导模型生成准确和有价值的输出。优化Prompt需要进行实验和反馈迭代,以提高模型生成的质量和一致性。
四、为什么优质Prompt才能生成优质的内容
优质的Prompt对于⽣成优质内容⾄关重要。⼀个好的Prompt可以明确指导模型生成准确、有针对性的输出,而低质量的Prompt则可能导致混淆、不相关或低质量的结果。
五、如何定义优质的Prompt
如何定义优质的Prompt,着重考虑表达清晰度、通用性和生成稳定性这三个关键方面。通过明确这些要素,我们能够提供清晰的指导,使⼤模型能够产⽣更准确、有针对性的输出。
- 明确任务要求和期望结果:定义Prompt时,需要准确定义任务的具体要求和期望的输出结果,以便引导模型⽣成准确的答案或解决⽅案。
- 使用明确的语言和结构:Prompt应采⽤简洁明了、⼀致性的语⾔和结构,避免歧义和模糊性,以确保模型准确理解任务和⽣成⼀致的输出。
- 考虑多样的用户需求:设计Prompt时要充分考虑到不同用户需求的多样性,使其适用于⼴泛的应⽤场景和任务类型。
- 提供灵活的参数设置:在Prompt中引⼊可调节的参数,使⽤⼾能够根据具体需求对模型⾏为进⾏灵活控制,以满⾜不同应⽤场景的要求。
- 引入控制机制:通过添加控制代码或关键字,限制⽣成内容的范围,避免模型⽣成⽆关或不准确的输出。
- 迭代优化和反馈:不断评估和优化Prompt,通过实验和⽤⼾反馈,使其能够⽣成稳定、⼀致的⾼质量结果。
六、Prompt万能公式
万能公式1:Prompt = 定义角色+背景描述+定目标+补充要求+示例
定义角色: 让大模型定义这个领域的专家。
背景描述: 描述问题背景。
定目标: 明确告诉大模型你要什么。
补充要求: 补充一些特殊要求。
示例: 一些实例,比如输出应该什么样子。
Case:
假设您是一位导游(定义角色),我和家人共五个人去北京旅行,预算一万,一共五天时间(背景描述),帮我做一份旅游攻略(定目标),注意:因为有老人,所以不爬山(要求)。
万能公式2:Prompt = 任务+生成主体+细节(可选)+形式(可选)
七、 Prompt优化技巧
1、迭代法
迭代法的核心原理是通过反复迭代和改进Prompt,逐步优化生成结果
-
结果评估
-
多轮次交互
2、Trick法
Trick法的核心原理是通过巧妙的Prompt设计和使用,引导模型在生成过程中产生期望的输出
-
戴高帽
-
增加引导语
3、工具法
工具法是通过使用各种工具和辅助资源来提升Prompt的效果和生成结果的质量。下面我将分别详细讲解工具法的三个技巧点,并为每个技巧点提供示例,其中关键信息将结合Prompt的不同部分进行标注。
-
检测类工具
-
优化类工具
其他付费内容:
