DensetNet原理简述以及pytorch在cifar-10上的训练

本文简要介绍了DenseNet的背景及基本原理,探讨了为解决CNN深度学习中梯度消失问题的各种策略,如ResNet和Highway Network。DenseNet通过密集连接每一层,保留所有层的特征,有效地传递信息。文章详细阐述了DenseBlock的构成,包括BN、ReLU和Conv,并展示了如何在PyTorch中实现DenseNet,同时提到了过渡层(Transition Block)的作用,用于控制模型复杂度。最后,文章提到了在cifar-10数据集上的训练过程。
摘要由CSDN通过智能技术生成

1. DensetNet背景介绍

1.卷积神经网络CNN在计算机视觉物体识别上优势显著,典型的模型有:LeNet5, VGG, Highway Network, Residual Network.
2.CNN越深则效果越好,但是,会面临梯度弥散的问题,经过层数越多,则前面的信息就会渐渐减弱和消散。
3.目前已有很多措施去解决以上困境:
(1)Highway Network,Residual Network通过前后两层的残差链接使信息尽量不丢失
(2)Stochastic depth通过随机drop掉Resnet的一些层来缩短模型
(3)FractalNets通过重复组合一些平行的层序列来保证深度的同时减轻这个问题。
但这些措施都有一个共性:都是在前一层和后一层中都建立一个短连接,如下图:
Resnet原理图示

2.DensetNet基本原理

DenseNet基本原理图
如上图所示,是一个5层的dense block,里面含有5层基本的卷积层,每一个卷积层都包含一个基本的BN,Relu和Conv,代码如下:

# 首先定义一个卷积块,其顺序是bn->relu->conv
def conv_block(in_channel, out_channel):
    layer = nn.Sequential(
        nn.BatchNorm2d(in_channel),
        nn.ReLU(True),
        nn.Conv2d(in_channel, out_channel, 3, padding=1, bias=False)
    )
    return layer

如上代码所示,dense block中的每一层都是包含着BN,Relu和Conv操作。加入BN和Relu操作,是处理上面一层传来的特征图,进行BN操作,然后在经过Relu操作,将梯度限定在一个特定的范围之内,BN和Relu都是减缓梯度问题的有效的手段(不了解Batch Normlization和Relu操作的,可以自行阅读相关的论文)。
实现完dense block中基本的层之后,接下来开始实现dense block,如上图所示,有一个变量叫做k,这个k代表的是,dense block里面的layer输出的ouput channel的个数,比方说࿰

要使用PyTorch训练CIFAR-10数据集,可以按照以下步骤进行操作: 1. 导入所需的PyTorch库: ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim ``` 2. 定义训练和测试数据集的转换方式: ```python transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) ``` 3. 加载CIFAR-10数据集并创建数据加载器: ```python trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ``` 4. 定义神经网络模型: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ``` 5. 定义损失函数和优化器: ```python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` 6. 进行模型的训练和测试: ```python for epoch in range(2): running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 正向传播、反向传播、优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 统计损失 running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 在测试集上测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %.2f %%' % (100 * correct / total)) ``` 通过以上步骤,我们可以使用PyTorch训练CIFAR-10数据集,并获得模型的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值