基于PaddlePadlle的图像分割の新手入门

本教程介绍了如何使用PaddleSeg进行图像分割,特别是人像分割任务。通过预训练的DeepLabv3+ Xception65模型,演示了安装PaddleSeg、下载模型、准备数据和进行模型预测的步骤,帮助初学者理解PaddleSeg语义分割库的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程链接:https://aistudio.baidu.com/aistudio/education/group/info/1767.

在这里插入图片描述

第五课 PaddleSeg快速体验

本课提要:

  • 学习使用预训练好的图像分割模型进行预测
  • 初步了解PaddleSeg语义分割库的使用
  • 本教程以常见的人像分割任务为例

一、什么是人像分割

人像分割任务旨在识别图像中的人体轮廓,与背景进行分离,返回分割后的二值图、灰度图、前景人像图,适应多个人体、复杂背景、各类人体姿态。可应用于人像扣图、人体特效和影视后期处理等场景。

常用数据库
Pascal VOC的三个主要物体识别竞赛是:分类,检测和分割(classification, detection, and segmentation)。
对于分割任务, VOC2012的trainval包含2007-2011年的所有对应图片, test只包含2008-2011。trainval有 2913张图片共6929个物体。

模型网络
介绍: DeepLabv3+是DeepLab语义分割系列网络的最新作,其前作有 DeepLabv1,DeepLabv2, DeepLabv3, 在最新作中。
Xception是DeepLabv3+原始实现的backbone网络,兼顾了精度和性能,适用于服务端部署。
方法: DeepLab的作者通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率。
实验: 在 PASCAL VOC 2012 dataset取得新的state-of-art performance,89.0mIOU。

二、在PaddleSeg上实现人像分割

第一步:PaddleSeg安装
下载,解压

第二步:预训练模型下载
下载预训练好的DeeplebV3+ xception65模型。
NOTE: ./pretrained_model为PaddleSeg默认的预训练模型存储目录,因此这里将模型放入该目录下。

第三步:数据准备
本教程挂载了一个小型的数据集,包含少量人像分割图片用于测试,数据集位于./data/data10908/humanseg.zip。
NOTE: ./dataset 为PaddleSeg默认的数据集存储目录,因此这里将测试集放入该目录下。

第四步:模型预测与可视化
pdseg/vis.py是模型预测和可视化的脚本。
PaddleSeg中关于模型的配置记录在configs目录 下的 yaml文件里。
在这里插入图片描述

三、实现步骤&代码
实现思路
安装PaddleSeg

代码


# 从PaddleSeg的github仓库下载代码 
git clone https://github.com/Paddl
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值