# 03-树3 Tree Traversals Again

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

Figure 1
Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer NN (\le 30≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to NN). Then 2N2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.
Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:

3 4 2 6 5 1

#include<iostream>
#include<string>
#include<vector>
#include<stack>

using namespace std;
int num;

void getpostorder(vector<int> preorder,int preL,vector<int> inorder,int inL,
vector<int>& postorder,int postL,int n)
{
if (n == 0) return;
if (n == 1) {
postorder[postL] = preorder[preL];
return;
}
preorder[preL];
postorder[postL + n - 1] = preorder[preL];
//在中序遍历数组上找出root的位置
int i = 0;
while (i < n) {
if (inorder[inL + i] == preorder[preL]) break;
++i;
}

int L = i, R = n - i - 1;

getpostorder(preorder, preL + 1, inorder, inL, postorder, postL, L);
getpostorder(preorder, preL + 1 + L, inorder, inL + L + 1, postorder, postL + L, R);
}

vector<vector<int>> getorder()
{
cin >> num;

vector<int> preOrder(num, 0);
vector<int> inOrder(num, 0);
stack<int> st;
int pre = 0, in = 0;
string temp;
int data;
for (int i = 0; i < 2 * num; i++)
{
cin >> temp;
if (temp == "Push")
{
cin >> data;
st.push(data);
preOrder[pre++] = data;
}

else if (temp == "Pop")
{
inOrder[in++] = st.top();
st.pop();
}
}

return{ preOrder, inOrder };

}

int main()
{
auto oredr = getorder();
vector<int> postorder(num, 0);
getpostorder(oredr[0], 0, oredr[1], 0, postorder, 0, num);
int i = 0;
for (; i < num-1; i++)
{
cout << postorder[i] << ' ';
}
cout << postorder[i];
}

#### 03-树3. Tree Traversals Again (25)

2015-07-01 13:01:21

#### 03-树3 Tree Traversals Again (25分)

2015-10-20 16:30:24

#### 03-树3. Tree Traversals Again

2015-03-28 15:23:16

#### Tree Traversals Again(mooc 浙大算法课）

2016-09-22 09:26:50

#### Tree Traversals Again (25)

2015-03-30 18:36:16

#### 【PAT】1086. Tree Traversals Again (25)

2014-11-05 11:13:50

#### PAT--Tree Traversals Again (25)--找规律。。

2015-04-13 11:35:58

#### Tree Traversals Again

2014-12-29 21:54:26

#### 1086. Tree Traversals Again (25)【二叉树】——PAT (Advanced Level) Practise

2016-03-19 01:12:26

#### 1020. Tree Traversals (25) -BFS

2015-05-30 13:44:40