kaldi、kaldi-ctc的安装(CUDA+CUDNN)

操作系统:Ubuntu14.04(64位)

显卡:GTX750Ti

CUDA版本:7.5(后缀为cuda_7.5.18_linux.run)(截止2019-3-1,kaldi仅支持cuda7.5和cuda8.0)

CUDNN版本:5.1(cudnn-7.5-linux-x64-v5.1.tgz)(截止2019-3-1,kaldi仅支持cudnn5.1)

Nvidia显卡驱动:NVIDIA-Linux-x86_64-390.87.run

本步骤很详细,我们实验室都是按照我的这个步骤安装成功了,看仔细,慢慢来都会成功的。

1.安装前你需要对你的 linux 进行配置

在hmoe目录里新建一个temp.sh文件,写入以下命令

echo y | sudo apt-get update
echo y | sudo apt-get install libtool
echo y | sudo apt-get install autoconf
echo y | sudo apt-get install wget
echo y | sudo apt-get install perl
echo y | sudo apt-get install subversion
echo y | sudo apt-get install build-essential
echo y | sudo apt-get install gfortran
echo y | sudo apt-get install libatlas-dev
echo y | sudo apt-get install libatlas-base-dev
echo y | sudo apt-get install zlib1g-dev
echo y | sudo apt-get install gawk
echo y | sudo apt-get install git
echo y | sudo apt-get install cmake
echo y | sudo apt-get install automake
echo y | sudo apt-get install autoconf

然后在终端执行 sudo bash temp.sh    若出现“***lock***”则说明你的系统是刚安装好,重启后再执行即可。如果是kaldi-ctc请按照以下步骤,如果是kaldi请直接跳转到4.2。

2.禁用Ubuntu自带显卡驱动并安装Nvidia显卡驱动

卸载原来所有的Nvidia驱动    sudo apt-get purge nvidia*
禁用Ubuntu自带显卡驱动    sudo gedit /etc/modprobe.d/blacklist.conf    在最后一行写入blacklist nouveau    而后执行sudo update-initramfs -u

若重启电脑后正常进入桌面    则执行命令    sudo service lightdm stop    之后在键盘按组合键    Ctrl+Alt+F1
若重启电脑后进入系统出现黑屏(只有上面一行字)    则在键盘按组合键    Ctrl+Alt+F1
开始登录    输入你的用户名(你装系统时候的电脑名字)    输入你的密码
进入你下载显卡驱动的目录(一般为cd Downloads/)为Nvidia驱动赋予权限     sudo chmod a+x NVIDIA-Linux-x86_64-418.43.run
开始安装Nvidia显卡驱动    sudo ./NVIDIA-Linux-x86_64-418.43.run
在安装Nvidia显卡驱动过程中出现以下对话,那么我们按照如下选择进行(出现warning点击ok即可)
The distribution-provided pre-install script failed! Are you sure you want to continue?    选择Continue installation
Would you like to register the kernel module souces with DKMS?This will allow DKMS to automati-ally build a new module, if you install a different kernel later?    选择no
Nvidia's 32-bit compatibility libraries?    选择no
Would you like to run the nvidia-xconfigutility to automatically update your x configuration so that the NVIDIA x driver will be used when you restart x? Any pre-existing x confile will be backed up.    选择yes

安装完成后重启电脑    在终端验证是否成功:nvidia-smi    出现详情则成功

3.按照下列步骤进行安装cuda以及cudnn

(注意:中间如果提示错误,一般都是让你安装软件,你安装就行。"CUDNN_ROOT"指的是cuda的安装目录,如:"/usr/local/cuda"。)

安装 cuda7.5:
进入你下载的cuda的文件夹,执行    sudo chmod a+x ./cuda_7.5.18_linux.run
之后执行    sudo ./cuda_7.5.18_linux.run    之后在屏幕的最下面会出现0%,请按空格到100%。之后会出现如下提示,按照我贴出的命令执行即可:

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n

Install the CUDA 7.5 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
 [ default is /usr/local/cuda-7.5 ]:回车

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 7.5 Samples?
(y)es/(n)o/(q)uit: y中的安装cudnn部分

Enter CUDA Samples Location
 [ default is /home/hanjiajun ]:回车

直到出现:
===========
= Summary =
===========

表示安装成功。

配置cuda环境:
执行:sudo gedit /etc/profile    在打开的文件最下面添加
export PATH=$PATH:/usr/local/cuda-7.5/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.5/lib
保存关闭
执行:source /etc/profile使配置生效
重启电脑
安装 cudnn5.1:
进入你下载的cudnn的文件夹,运行
sudo tar -zxvf cudnn-7.5-linux-x64-v5.1.tgz
进入你下载的cudnn的文件夹下的cuda文件下的include目录,运行
sudo cp cudnn.h /usr/local/cuda/include
进入你下载的cudnn的文件夹下的cuda文件下的lib64目录,运行
sudo cp * /usr/local/cuda/lib64
给予文件读写权限
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
重启电脑

4.编译

4.1编译kaldi-ctc

下载kaldi-ctc    git clone https://github.com/lingochamp/kaldi-ctc
进入kaldi-ctc目录后执行以下命令
cd tools
make
make openblas
bash extras/install_cudnn.sh(若出现无法下载的问题,那么打开install_cudnn.sh,把我们已经下载的cudnn拷贝到tools文件下,并将后缀“.tgz”改为“-tgz”之后执行bash extras/install_cudnn.sh即可。注意版本要和注释里的一样,如果不一样,请回滚到步骤3重新安装。因为版本在变,所以可能会和我在开头下载的不一样,但是不影响安装的操作步骤)
cd ../src
./configure --cudnn-root=/usr/local/cuda --openblas-root=../tools/OpenBLAS/install
make depend
make

4.2编译kaldi(kaldi-ctc请略过)

进入kaldi目录后执行以下命令
cd tools
make

cd ../src

make depend
make

至此安装编译完成,可以去kaldi/egs/yesno/文件夹下 执行 bash run.sh 做简单的测试。

5.简单的ctc案例测试

有时间我会后续写入一个简单的ctc案例,不过环境这样已经是搭好了。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页