[论文笔记] MobileNet

作者团队:谷歌
关注点:同时优化网络模型的速度与大小

related works

A1、网络受depth wise seperable convolution (在Inception、Xception中也有用到)的启发
A2、factorized network
A3、Squeezenet使用到了bottleneck的方法
B1、对预训练网络的shrinking、factorizing以及compressing(涉及乘积量化、哈希、减枝、向量量化、霍夫编码等)
B2、distillation,大型网络teach小网络
B3、low bit network

模型结构

1、depth wise seperable convolution

将标准卷积分解成为depthwise convolution和pointwise convolution。类似的分解卷积的方法之前也接触过,在学习数字图像处理时,将二维卷积核分解成两个一维卷积核能够减少计算量与参数量。


在这里插入图片描述

假设标准卷积的输入为 D F × D F × M D_F\times{D_F}\times{M} DF×DF×M,输出为 D F × D F × N D_F\times{D_F}\times{N} DF×DF×N,由上图,则标准卷积的参数量为 D K ⋅ D K ⋅ M ⋅ N D_K\cdot{D_K}\cdot{M}\cdot{N} DKDKMN,计算量为 D K ⋅ D K ⋅ M ⋅ N ⋅ D F ⋅ D F D_K\cdot{D_K}\cdot{M}\cdot{N}\cdot{D_F}\cdot{D_F} DKDKMNDFDF
depthwise seperable convolution 的参数量为 D K ⋅ D K ⋅ M + M ⋅ N D_K\cdot{D_K}\cdot{M}+M\cdot{N} DKDKM+MN,计算量为: D K ⋅ D K ⋅ M ⋅ D F ⋅ D F + M ⋅ N ⋅ D F ⋅ D F D_K\cdot{D_K}\cdot{M}\cdot{D_F}\cdot{D_F}+M\cdot{N}\cdot{D_F}\cdot{D_F} DKDKMDFDF+MNDFDF
那么,depthwise separable 与标准卷积参数量之比为
P a r a m d w s P a r a m s t a = D K ⋅ D K ⋅ M + M ⋅ N D K ⋅ D K ⋅ M ⋅ N = 1 N + 1 D K 2 \frac{Param_{dws}}{Param_{sta}}=\frac{D_K\cdot{D_K}\cdot{M}+M\cdot{N}}{D_K\cdot{D_K}\cdot{M}\cdot{N}}=\frac{1}{N}+\frac{1}{D_K^2} ParamstaParamdws=DKDKMNDKDKM+MN=N1+DK21
depthwise separable 与标准卷积计算量之比为
P a r a m d w s P a r a m s t a = D K ⋅ D K ⋅ M ⋅ D F ⋅ D F + M ⋅ N ⋅ D F ⋅ D F D K ⋅ D K ⋅ M ⋅ N ⋅ D F ⋅ D F = 1 N + 1 D K 2 \frac{Param_{dws}}{Param_{sta}}=\frac{D_K\cdot{D_K}\cdot{M}\cdot{D_F}\cdot{D_F}+M\cdot{N}\cdot{D_F}\cdot{D_F}}{D_K\cdot{D_K}\cdot{M}\cdot{N}\cdot{D_F}\cdot{D_F}}=\frac{1}{N}+\frac{1}{D_K^2} ParamstaParamdws=DKDKMNDFDFDKDKMDFDF+MNDFDF=N1+DK21
标准卷积与depthwise seperable conv的结构:


在这里插入图片描述

2、shrinking hyperparameters:width multiplier、resolution multiplier

width multiplier:添加超参 α \alpha α,改变通道数,原来的输入通道数 M M M变为 α M \alpha M αM,输出通道数 N N N变为 α N \alpha N αN。这样使得计算量之比变为 α N + α 2 D K 2 \frac{\alpha}{N}+\frac{\alpha^2}{D_K^2} Nα+DK2α2,参数量约减少为原来的 α 2 \alpha^2 α2
resolution multiplier:添加超参 ρ \rho ρ,改变图像大小,原本的边长 D F D_F DF变为 ρ D F \rho D_F ρDF,这样使得计算量之比变为 α ρ 2 N + α 2 ρ 2 D K 2 \frac{\alpha \rho^2}{N}+\frac{\alpha^2 \rho^2}{D_K^2} Nαρ2+DK2α2ρ2,参数量约减少为原来的 α 2 ρ 2 \alpha^2 \rho^2 α2ρ2


在这里插入图片描述
分类精度-计算量:对数线性关系
在这里插入图片描述
分类精度-参数量

3、具体网络结构

网络结构以及每层的卷积核设置


在这里插入图片描述

不同类型卷积层的计算量以及参数量如下:


在这里插入图片描述

这里发现的问题是 1 × 1 1\times1 1×1卷积在整个网络中所占用的计算量以及参数量均为最大。这里的坑之后由ShuffleNet填上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值