| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 6412 | Accepted: 3430 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
Source
题意:求出符合要求的括号的最大数目。
分析:概率dp入门题。将大区间分划为小区间,最先求出最小区间,基于小区间的基础上根据规则生成大区间的值。dp[i][j]表示区间i到j上最大的符合要求的括号数。见AC代码:
#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f3f;
const int maxn=1005;
char s[maxn];
int dp[maxn][maxn];
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
while(scanf("%s",s)&&strcmp(s,"end"))
{
memset(dp,0,sizeof(dp));
int slen=strlen(s);
for(int len=1; len<slen; len++)
{
for(int i=0; i+len<slen; i++)
{
int j=len+i;
//dp[i][j]=-INF;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+1][j-1]+2;
for(int k=i; k<j; k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
}
}
printf("%d\n",dp[0][slen-1]);
}
}
刷题长见识。
特记下,以备后日回顾。

本文介绍了一种使用动态规划算法解决寻找字符串中最长的有效括号子序列的问题,并提供了一个具体的实现案例。
236

被折叠的 条评论
为什么被折叠?



