POJ 2955 Brackets 区间dp入门题

本文介绍了一种使用动态规划算法解决寻找字符串中最长的有效括号子序列的问题,并提供了一个具体的实现案例。

Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6412 Accepted: 3430

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source


    题意:求出符合要求的括号的最大数目。

    分析:概率dp入门题。将大区间分划为小区间,最先求出最小区间,基于小区间的基础上根据规则生成大区间的值。dp[i][j]表示区间i到j上最大的符合要求的括号数。见AC代码:

#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f3f;
const int maxn=1005;
char s[maxn];
int dp[maxn][maxn];
int max(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	while(scanf("%s",s)&&strcmp(s,"end"))
	{
		memset(dp,0,sizeof(dp));
		int slen=strlen(s);
		for(int len=1; len<slen; len++)
		{
			for(int i=0; i+len<slen; i++)
			{
				int j=len+i;
				//dp[i][j]=-INF;
				if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
					dp[i][j]=dp[i+1][j-1]+2;
				for(int k=i; k<j; k++)
					dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
			}
		}
		printf("%d\n",dp[0][slen-1]);
	}
}
    刷题长见识。

    特记下,以备后日回顾。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值