我偶然看了一篇写的比较好冒泡排序优化的博客,自己整理了一下,分享给大家,一起学习。若有错误,欢迎大家指正~
冒泡排序(BubbleSort)
图片来自:https://blog.csdn.net/u013457167/article/details/81989207
复杂度和稳定性情况:
最好的时间复杂度:O(n)
最坏的时间复杂度:O(n²)
平均的时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定
一般冒泡排序写法
#include<iostream>
using namespace std;
void BubbleSort(int arr[],int len) //冒泡排序函数,arr[]做参数退化为一个指针,接受数组的首地址
{
int temp;
for(int i = 0; i < len - 1; ++i) //排序的次数
{
for(int j = 0; j < len -i-1; ++j) //每次排序的比较次数
{
if(arr[j] > arr[j+1]) //比较大小,大的往后放
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for(int k = 0; k < len; ++k) //打印排序好的数组,用于测试
{
cout<<arr[k]<<" ";
}
cout<<endl;
}
void main()
{
int a[] = {1,3,4,2,6,7,8,0};
int length = sizeof(a) / sizeof(int); //计算数组的长度
BubbleSort(a,length); //调用冒泡排序函数,a传入数组的首地址
}
优化一
假设我们现在排序ar[]={1,2,3,4,5,6,7,8,10,9}这组数据,按照上面的排序方式,第一趟排序后将10和9交换已经有序,接下来的8趟排序就是多余的,什么也没做。所以我们可以在交换的地方加一个标记,如果那一趟排序没有交换元素,说明这组数据已经有序,不用再继续下去。
优化一冒泡排序的代码如下:
#include<iostream>
using namespace std;
void BubbleSort(int arr[],int len) //冒泡排序优化一函数,arr[]做参数退化为一个指针,接受数组的首地址
{
int temp;
int flag = 0; //设置一个标记
for(int i = 0; i < len-1; ++i) //排序的次数
{
flag = 0;
for(int j = 0; j < len-i-1; ++j) //每次排序的比较次数
{
if(arr[j] > arr[j+1]) //比较大小,大的往后放
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
flag = 1; //本次排序有变动,将标记设为1
}
}
if(flag == 0) //若标记flag未变化,说明数组排序完成,直接返回
{
return;
}
}
for(int k = 0; k < len; ++k) //打印排序好的数组,用于测试
{
cout<<arr[k]<<" ";
}
cout<<endl;
}
void main()
{
int a[8] = {1,3,4,2,6,7,8,0};
int length = sizeof(a) / sizeof(int); //计算数组的长度
BubbleSort(a,length); //调用冒泡排序函数,a传入数组的首地址
}
优化二
优化一仅仅适用于连片有序而整体无序的数据(例如:1, 2,3 ,4 ,7,6,5)。但是对于前面大部分是无序而后边小半部分有序的数据(1,2,5,7,4,3,6,8,9,10)排序效率也不可观,对于种类型数据,我们可以继续优化。既我们可以记下最后一次交换的位置,后边没有交换,必然是有序的,然后下一次排序从第一个比较到上次记录的位置结束即可。
优化二冒泡排序的代码如下:
#include<iostream>
using namespace std;
void BubbleSort(int arr[],int len) //冒泡排序优化二函数,arr[]做参数退化为一个指针,接受数组的首地址
{
int temp = 0;
int flag = 0; //设置一个标记
int pos = 0; //用来记录最后一次交换的位置
int k = len-1;
for(int i = 0; i < len-1; ++i) //排序的次数
{
flag = 0;
pos = 0;
for(int j = 0; j < k; ++j) //每次排序的比较次数
{
if(arr[j] > arr[j+1]) //比较大小,大的往后放
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
flag = 1; //本次排序有变动,将标记设为1
pos = j; //记录本次排序最后一次交换的位置
}
}
if(flag == 0) //若标记flag未变化,说明数组排序完成,直接返回
{
return;
}
k = pos; //将最后一次交换的位置传给k,减少不必要的循环次数
}
for(int x = 0; x < len; ++x) //打印排序好的数组,用于测试
{
cout<<arr[x]<<" ";
}
cout<<endl;
}
void main()
{
int a[] = {1,3,4,2,6,7,8,0};
int length = sizeof(a) / sizeof(int); //计算数组的长度
BubbleSort(a,length); //调用冒泡排序函数,a传入数组的首地址
}
优化三
优化二的效率有很大的提升,还有一种优化方法可以继续提高效率。大致思想就是一次排序可以确定两个值,正向扫描找到最大值交换到最后,反向扫描找到最小值交换到最前面。例如:排序数据1,2,3,4,5,6,0
优化三的冒泡排序代码如下:
#include<iostream>
using namespace std;
//冒泡改进版
void BubbleSort(int arr[],int len) //冒泡排序优化三函数,arr[]做参数退化为一个指针,接受数组的首地址
{
int temp;
int flag; //设置一个标记
int pos; //用来记录最后一次交换的位置
int left = 0; //表示范围
int right = len-1;
for(int i = 0; i < len-1; ++i) //排序的次数
{
flag = 0;
pos = 0;
//正向寻找最大值
for(int j = left; j < right; ++j) //每次排序的比较次数
{
if(arr[j] > arr[j+1]) //比较大小,大的往后放
{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
flag = 1; //本次排序有变动,将标记设为1
pos = j;
}
}
if(flag == 0) //若标记flag未变化,说明数组排序完成,直接返回
{
return;
}
right = pos; //将right往中间靠拢
flag = 0;
for(j = right; j > left; --j)
{
if(arr[j] < arr[j-1]) //比较大小,小的往前放
{
temp = arr[j-1];
arr[j-1] = arr[j];
arr[j] = temp;
flag = 1; //本次排序有变动,将标记设为1
pos = j;
}
}
if(flag == 0) //若标记flag未变化,说明数组排序完成,直接返回
{
return;
}
left = pos; //左右扫描范围缩小,往中间靠拢
}
}
void main()
{
int a[] = {2,1,3,6,5,4,0};
int len = sizeof(a) / sizeof(int); //计算数组的长度
BubbleSort(a,len); //调用冒泡排序函数,a传入数组的首地址
for(int x = 0; x < len; ++x) //打印排序好的数组,用于测试
{
cout<<a[x]<<" ";
}
cout<<endl;
}
其他排序算法:
1、 堆排
2、 直接插入排序
3、 希尔排序(优化版)
4、直接选择排序
5、快速排序(递归版和非递归版)
6、归并排序
7、基数排序