冒泡排序及其优化

我偶然看了一篇写的比较好冒泡排序优化的博客,自己整理了一下,分享给大家,一起学习。若有错误,欢迎大家指正~
 

冒泡排序(BubbleSort)
在这里插入图片描述
图片来自:https://blog.csdn.net/u013457167/article/details/81989207

复杂度和稳定性情况:
最好的时间复杂度:O(n)
最坏的时间复杂度:O(n²)
平均的时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定

一般冒泡排序写法

#include<iostream>
using namespace std;

void BubbleSort(int arr[],int len) //冒泡排序函数,arr[]做参数退化为一个指针,接受数组的首地址
{
	int temp;
	for(int i = 0; i < len - 1; ++i) //排序的次数
	{
		for(int j = 0; j < len -i-1; ++j) //每次排序的比较次数
		{
			if(arr[j] > arr[j+1]) //比较大小,大的往后放
			{
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
			}
		}
	}
	for(int k = 0; k < len; ++k) //打印排序好的数组,用于测试
	{
		cout<<arr[k]<<" ";
	}
	cout<<endl;
}

void main()
{
	int a[] = {1,3,4,2,6,7,8,0};
	int length = sizeof(a) / sizeof(int); //计算数组的长度
	BubbleSort(a,length); //调用冒泡排序函数,a传入数组的首地址
}

优化一
假设我们现在排序ar[]={1,2,3,4,5,6,7,8,10,9}这组数据,按照上面的排序方式,第一趟排序后将10和9交换已经有序,接下来的8趟排序就是多余的,什么也没做。所以我们可以在交换的地方加一个标记,如果那一趟排序没有交换元素,说明这组数据已经有序,不用再继续下去。

优化一冒泡排序的代码如下:

#include<iostream>
using namespace std;

void BubbleSort(int arr[],int len)  //冒泡排序优化一函数,arr[]做参数退化为一个指针,接受数组的首地址
{
	int temp;
	int flag = 0; //设置一个标记
	for(int i = 0; i < len-1; ++i)  	//排序的次数
	{
		flag = 0;
		for(int j = 0; j < len-i-1; ++j)  //每次排序的比较次数
		{
			if(arr[j] > arr[j+1])  //比较大小,大的往后放
			{
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
				flag = 1; //本次排序有变动,将标记设为1
			}
		}
		if(flag == 0) //若标记flag未变化,说明数组排序完成,直接返回
		{
			return;
		}	
	}
	for(int k = 0; k < len; ++k)   //打印排序好的数组,用于测试
	{
		cout<<arr[k]<<" ";
	}
	cout<<endl;
}

void main()
{
	int a[8] = {1,3,4,2,6,7,8,0};
	int length = sizeof(a) / sizeof(int); //计算数组的长度
	BubbleSort(a,length);   //调用冒泡排序函数,a传入数组的首地址
}

优化二
优化一仅仅适用于连片有序而整体无序的数据(例如:1, 2,3 ,4 ,7,6,5)。但是对于前面大部分是无序而后边小半部分有序的数据(1,2,5,7,4,3,6,8,9,10)排序效率也不可观,对于种类型数据,我们可以继续优化。既我们可以记下最后一次交换的位置,后边没有交换,必然是有序的,然后下一次排序从第一个比较到上次记录的位置结束即可。
在这里插入图片描述

优化二冒泡排序的代码如下:

#include<iostream>
using namespace std;

void BubbleSort(int arr[],int len)  //冒泡排序优化二函数,arr[]做参数退化为一个指针,接受数组的首地址
{
	int temp = 0;
	int flag = 0;  //设置一个标记
	int pos = 0;  //用来记录最后一次交换的位置
	int k = len-1;
	for(int i = 0; i < len-1; ++i)  //排序的次数
	{
		flag = 0;
		pos = 0;
		for(int j = 0; j < k; ++j)   //每次排序的比较次数
		{
			if(arr[j] > arr[j+1]) //比较大小,大的往后放
			{
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
				flag = 1; //本次排序有变动,将标记设为1
				pos = j;  //记录本次排序最后一次交换的位置
			}
		}
		if(flag == 0)  //若标记flag未变化,说明数组排序完成,直接返回
		{
			return;
		}
		k = pos; //将最后一次交换的位置传给k,减少不必要的循环次数
	}
	for(int x = 0; x < len; ++x)  //打印排序好的数组,用于测试
	{
		cout<<arr[x]<<" ";
	}
	cout<<endl;
}

void main()
{
	int a[] = {1,3,4,2,6,7,8,0};
	int length = sizeof(a) / sizeof(int); //计算数组的长度
	BubbleSort(a,length);   //调用冒泡排序函数,a传入数组的首地址
}

优化三
优化二的效率有很大的提升,还有一种优化方法可以继续提高效率。大致思想就是一次排序可以确定两个值,正向扫描找到最大值交换到最后,反向扫描找到最小值交换到最前面。例如:排序数据1,2,3,4,5,6,0
在这里插入图片描述
优化三的冒泡排序代码如下:

#include<iostream>
using namespace std;

//冒泡改进版
void BubbleSort(int arr[],int len)  //冒泡排序优化三函数,arr[]做参数退化为一个指针,接受数组的首地址
{
	int temp;
	int flag;  //设置一个标记
	int pos;  //用来记录最后一次交换的位置
	int left = 0;    //表示范围
    int right = len-1;
	for(int i = 0; i < len-1; ++i)  //排序的次数
	{
		flag = 0;
		pos = 0;
		//正向寻找最大值
		for(int j = left; j < right; ++j)   //每次排序的比较次数
		{
			if(arr[j] > arr[j+1]) //比较大小,大的往后放
			{
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
				flag = 1; //本次排序有变动,将标记设为1
                pos = j;
			}
		}
		if(flag == 0)  //若标记flag未变化,说明数组排序完成,直接返回
		{
			return;
		}
		right = pos; //将right往中间靠拢
		flag = 0;
		for(j = right; j > left; --j)
		{
			if(arr[j] < arr[j-1])  //比较大小,小的往前放
			{
				temp = arr[j-1];
				arr[j-1] = arr[j];
				arr[j] = temp;
				flag = 1; //本次排序有变动,将标记设为1
                pos = j;
			}
		}
		if(flag == 0)   //若标记flag未变化,说明数组排序完成,直接返回
		{
			return;
		}
		left = pos; //左右扫描范围缩小,往中间靠拢
	}
}

void main()
{
	int a[] = {2,1,3,6,5,4,0};
	int len = sizeof(a) / sizeof(int); //计算数组的长度
	BubbleSort(a,len);   //调用冒泡排序函数,a传入数组的首地址
        for(int x = 0; x < len; ++x)  //打印排序好的数组,用于测试
	{
	    cout<<a[x]<<" ";
	}
	cout<<endl;
}

其他排序算法:

1、 堆排
2、 直接插入排序
3、 希尔排序(优化版)
4、直接选择排序
5、快速排序(递归版和非递归版)
6、归并排序
7、基数排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值